

MT8850/A/52/A/52B Remote Programming Manual

MT8850A/MT8852A/MT8852B

Bluetooth[®] Test Set

Remote Programming Manual

Originated by Anritsu Ltd., EMD, Stevenage, U.K.

P/N: 13000-00110 REVISION: I CREATED February 2006 COPYRIGHT 2006 ANRITSU

Crossed-out Wheeled Bin Symbol

Equipment marked with the Crossed-out Wheeled Bin Symbol complies with the European Parliament and Council Directive 2002/96/EC (the "WEEE Directive") in European Union.

For Products placed on the EU market after August 13, 2005, please contact your local Anritsu representative at the end of the product's useful life to arrange disposal in accordance with your initial contract and the local law.

Warranty

The Anritsu product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment. Anritsu's obligation covers repairing or replacing products that prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to Anritsu for warranty repairs. Obligation is limited to the original purchaser. Anritsu is not liable for consequential damages.

Limitation of Warranty

The foregoing warranty does not apply to Anritsu connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the buyer's sole and exclusive remedies.

Notice about Documentation

Anritsu Limited has prepared this manual for use by Anritsu Limited personnel and customers as a guide for the proper installation and operation of Anritsu Limited equipment and computer programs.

The drawings, specifications, and information contained herein are the property of Anritsu Limited, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of Anritsu Limited.

Trademark Acknowledgments

The *Bluetooth* word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by Anritsu is under license. Other trademarks and trade names are those of their respective owners.

V Connector and K Connector are registered trademarks of Anritsu Limited.

Adobe Acrobat and Acrobat Reader are trademarks of Adobe Systems Incorporated.

Table of Contents

	Warranty	3
	Limitation of Warranty	3
	Trademark Acknowledgments	3 א
Chanter	r 1 About this Manual	
-		
Pur	pose and Scope of this Manual	1-1
You	r Comments on this Manual	1-1
Soft	ware Versions	1-1
Noti	fication of Software Release	1-2
Usir	ng this Manual	1-2
Ass	ociated Documentation	1-3
Con	nmand Presentation	1-3
Abb	reviations	1-4
Chapter	r 2. General Information	2-1
Scri	pt Mode	2-1
Sing	gle Test Mode	2-1
Sigr	nal Generator Mode	2-2
EDF	R Signal Generator Mode (MT8852B only)	2-2
CW	Measurement Mode	2-2
EDF	R CW Measurement Mode (MT8852B only)	2-2
GPI	B Convention	2-2
Chapter	r 3. GPIB Operation	3-1
Mne	emonic Syntax	3-1
	Termination	3-1
	Syntax	3-1
Suff	fixes	3-2
Cha	iracter Case	3-2
GPI	B 488.2 Registers	3-3
	Status Byte Register (STB) and Service Request Enable Register (SRE)	3-3
	Standard Event Status Register (ESR) and Standard Event Status Enable Register (ESE)	3-5
	Equipment Under Test (EUT) Fail register (ETF) and Equipment Under Test (Fail Enable Register (ETE)	(EUT) 3-6
	Instrument Status Register (INS) and Instrument Status Enable Register (INE	.3-7

Change Register (CHG) and Change Enable (CHE) Register (MT8852A/52B only 3-8)
EDR Equipment Under Test Fail register (EETF) and EDR Equipment Under Test Fail Enable Register (EETE) (MT8852B only)	t 9
GPIB on RS232	0
Summary of RS232 Commands 3-1	1
Chapter 4. Event Register and Mandatory Commands 4-	1
CHE (Change Enable Register)4-	2
CHG (Change Register)4-	2
CLS (Clear GPIB Status Bytes)4-	3
EETE (EDR EUT Fail Enable Register) (MT8852B only)4-	3
EETF (EDR EUT Fail Register Query) (MT8852B only)4-	4
ESE (Standard Event Status Enable)4-	5
ESR (Standard Event Status Register Query)4-	6
ETE (EUT Fail Enable Register)4-	7
ETF (EUT Fail Register Query)4-	7
IDN (Identification Query)4-	8
INE (Instrument Status Enable Register)4-	8
INS (Instrument Status Register Query)4-	9
OPC (Operation Completed Indication)4-	9
RST (Instrument Reset)	0
SRE (Service Request Enable Register) 4-1	0
STB (Status Byte Register Query)4-1	1
TST (Self Test Query)4-1	1
WAI (Wait to Continue)4-1	1
Chapter 5. General GPIB commands5-	1
BOOTSTATUS? (Startup Self Test Status Request)5-	2
CONT (Continue After Self Test)5-	2
ERRLST (Error List)	3
EUTINIT (<i>Bluetooth</i> Slave Mode)5-	4
EUTMAXPWR (Send EUT to Max Power Control)5-	5
LKPASS (Update Lock/Unlock Password)5-	5
LOCK (Script Lock)	6
OPMD (Operation Mode)5-	7
SCPTCFG (Configure Script)5-	9

SCPTNM (Set Script Name)	5-11
SCPTRST (Reset Script) (MT8852B only)	5-11
SCPTSEL (Select Script)	5-12
SCRIPTMODE (Script Mode)	5-12
STATUS (Status Command)	5-13
STERR (Request POST or *TST? Results)	5-15
Self Test Items	5-15
TSTPAUSE (Test Pause)	5-17
TXPWR (Transmitter Power Level)	5-18
UNLOCK (Script Unlock)	5-18
Chapter 6. System configuration	6-1
SYSCFG (Set System Configuration)	6-1
AUTH (Authentication Settings)	6-2
BNCOUTPUT (Rear Panel Output)	6-3
BTADDR (Tester Bluetooth Address)	6-4
CONFIG (Tester Configuration)	6-5
GPIB (Tester GPIB Address)	6-5
Tester Communication RS232 Baud Rate	6-6
RSMODE (Tester Rear Panel RS232 Mode)	6-7
Tester Measurement System Power Range	6-8
Mod Index Setting	6-9 6_10
Filter Setting	0-10 6-11
Link Timeout Setting	6-11
DISPSOUND (Tester Display and Sound Control)	6-12
Display Contrast	6-12
Key Click	6-13
Error Beep on Illegal Entry	6-13
User Text State	6-14
User Text	6-14
FOLTST (Follow Test Mode)	6-15
EUTADDR (EUT Address)	6-16
EUTFEAT (EUT supported features)	6-16
EUTNAME (EUT User Friendly Name Request)	6-17
EUTRS232 (EUT RS232 HCI Set Up)	6-18
EUTSRCE (EUT Address Source)	6-19
HWINFO (Hardware information)	6-20

	IDENT (T	Fester Identity)	6-20
	INQSET	(Inquiry Set Up)	6-21
	RNU	M (Number of Response)	6-21
	TIME	EOUT (Maximum Inquiry Time)	6-22
	NAM	E (Common Name During Inquiry)	6-22
	OPTSTA	TUS? (Option status)	6-23
	PAGSET	(Page Setting)	6-24
	EUT	PSRM (EUT Page Scan Repetition Mode)	6-24
	PAGETO	0 (Page Timeout Setting)	6-25
	PINCOD	E (PIN Code)	6-25
	PINLEN	(PIN Code Length)	6-26
	SCPTSE	T (Script Set Up)	6-27
	LPS1	FFAIL (Loop test/script stop on fail)	6-27
	Loop	Count	6-28
	Freat	uency Display Mode	6-29
	VERDAT	F (Tester Firmware Version and Date Stamp)	6-29
	VERNUM	/ (Tester Firmware Version Numbers) (MT8852B only)	6-30
Cha	pter 7.	SCO Configuration (MT8852A/52B only)	7-1
	SCOCFO	G (Set SCO Configuration)	7-1
	AIRCODI	E (SCO Air Code Format)	7-2
	BITPOSM	N (SCO Linear PCM Bit Position)	7-3
	INPUTCO	ODE (SCO Input Coding Format)	7-4
	INPUTDA	ATA (SCO Input Data Format)	7-5
	LBMODE	E (Loopback Mode)	7-6
	PKTTYPI	E (SCO Packet Type)	7-7
	SAMPSIZ	ZE (SCO Input Sample Size)	7-8
	TONEGE	EN (SCO Tone Generator)	7-9
Cha	pter 8.	SCO Connections (MT8852A/52B only)	8-1
	SCOCON	NN (SCO Connect)	8-1
	SCODIS	C (SCO Disconnect)	8-1
Cha	pter 9.	AFH Measurement (MT8852A/52B only)	9-1
	AFHCFG	G (Set AFH Configuration)	9-1
ACM (Read Active Channel Map)9-2			9-2
	AFH (AF	H on / off)	9-2

DISPLAY (Display channel utilisation or FER page)	9-3
EUTRPT (EUT reporting on / off)	9-3
EUTRRATE (EUT Reporting Rate)	9-4
FER (Read Frame Error Rate)	9-4
MINCHAN (Minimum number of active channels)	9-4
MPLAM (Set MT8852A/52B Pseudo Local Assessment Map)	9-5
SCALE	0.5
Chapter 10 Signal Concreter Made and CW Macourement	10.1
Signal Generator Mode	10-1
EDR Signal Generator Mode (MT8852B only)	10-2
CW Measurement Mode	10-3
EDR CW Measurement Mode (MT8852B only)	10-4
CWRESULT (CW Measurements Results Output) (MT8852B only)	10-5
ECWRESULT (EDR CW Measurements Results Output) (MT8852B o	nly)10-6
Chapter 11. Test Configuration	11-1
Configuring Tests in Standard Mode	11-2
Output Power Test Configuration (OPCFG)	11-2
Power Control Test Configuration (PCCFG)	11-5
Initial Carrier Test Configuration (ICCFG)	11-7
Carrier Drift Test Configuration (CDCFG)	11-9
Single Slot Sensitivity Test Configuration (SSCFG)	11-12
Multi Slot Sensitivity Test Configuration (MSCFG)	11-14
Modulation Index Test Configuration (MICFG)	11-16
Input Power Sensitivity Test Configuration (MPCFG)	11-18
Relative Transmit Power Test Configuration (ERP) (MT8852B only)	11-20
Carrier Frequency Stability and Modulation Test Configuration (ECM) only) 11-21	(MT8852B
Differential Phase Encoding Test Configuration (EDP) (MT8852B only)11-23
EDR Sensitivity Test Configuration (EBS) (MT8852B only)	11-24
EDR BER Floor Sensitivity Test Configuration (EFS) (MT8852B only)	11-25
EDR Maximum Input Power Test Configuration (EMP) (MT8852B only	′)11-26
Configuring Tests in Single Payload Mode (SPCFG)	11-27
Test Limit Variables	11-28
Output Power limit commands	11-28
Power Control Limit Commands	11-29
Initial Carrier Limit Commands	11-30
Carrier Drift Limit Commands	11-31
Sensitivity Related Limit Commands	11-32

Modulation Index Limit Commands	11-33
Relative Transmit Power Limit Commands (MT8852B only)	11-34
PDIFFLL – PDPSK to PGFSK difference window lower limit (MT8852B	only)11-34
PDIFFLH – PDPSK to PGFSK difference window upper limit (MT8852B 35	only)11-
Frequency and Modulation Accuracy Limit Commands (MT8852B only)	11-36
INITFRQLH - Initial frequency error upper limit value (MT8852B only)	11-36
INITFRQLL - Initial frequency error lower limit value (MT8852B only)	11-37
FREQERLH - Frequency error upper limit value (MT8852B only)	11-38
FREQERLL - Frequency error lower limit value (MT8852B only)	11-39
BLKFRQLH - Block frequency error upper limit value	11-40
BLKFRQLL - Block frequency error lower limit value (MT8852B only)	11-41
LRMSDEVM - 2Mbs RMS DEVM limit value (MT8852B only)	11-42
HRMSDEVM - 3Mbs RMS DEVM limit value (MT8852B only)	11-43
LPKDEVM - 2Mbs Peak DEVM limit value (MT8852B only)	11-44
HPKDEVM - 3Mbs Peak DEVM limit value (MT8852B only)	11-45
LPCTDEVM - 2Mbs 99% packets DEVM limit value (MT8852B only)	11-46
HPCTDEVM - 3Mbs 99% packets DEVM limit value (MT8852B only)	11-47
Differential Phase Encoding Limit Commands	11-48
PCTPKT - Percentage of packets with no errors limit value (MT8852B c	only). 11-48
EDR Sensitivity Limit Commands (MT8852B only)	11-49
THERR - Threshold error limit (MT8852B only)	11-49
TTERR - Total test error limit (MT8852B only)	11-50
Sensitivity Related Limit Commands (MT8852B only)	11-51
Parameter Variables	11-52
Actual Frequencies Used (LTXFREQ, LRXFREQ, LFREQ, MTXFREQ, MRXFREQ, MFREQ, HTXFREQ, HRXFREQ, HFREQ, TXFREQ, RXFF	REQ)11-52
DEFAULT	11-55
DHXPKT - DHx test packet type to use (MT8852B only)	11-56
DIRTYTAB - Write the dirty table	11-57
DIRTYTX	11-59
Frequencies Used (LFREQSEL, MFREQSEL, HFREQSEL)	11-60
DRIFTS	11-61
HOPMODE	11-62
HOPPING	11-63
HOPSTATE	11-64
MINPWR	11-65
NUMBITS - Number of bits (MT8852B only)	11-66
NUMBLKS - Number of blocks to test (MT8852B only)	11-67
NUMCYC	11-68
NUMPKTS	11-69
PAYLOAD	11-70

PEAKLIM	11-71	
PKTCOUNT	11-72	
PKTSIZE	11-73	
PKTTYPE	11-74	
PTXLEV - Set Maximum-Minimum Output Power (MT8852B o	nly)11-75	
PWRDELAY		
Change Mod Index Test Payload Toggle Operation (TOGGLE)) 11-78	
TSTCTRL		
TTBITCNT - Total test bit count(MT8852B only):		
TXPWR	11-81	
Chapter 12. Running and Aborting Tests	12-1	
Running Tests (RUN)	12-1	
Aborting Tests (ABORT)	12-1	
Chapter 13. Reading Test Results Data	13-1	
Summary Results Screens	13-1	
Summary Results Output Format	13-3	
Extended Results Data Output	13-4	
Extended Results Output Format	13-6	
Output Power Test Results	13-7	
Power Control Test Results	13-8	
Modulation Index Test Results	13-9	
Initial Carrier Test Results	13-10	
Carrier Drift Test Results	13-11	
Carrier Drift RESULT Output in Null Packet Mode	13-12	
Single Slot Sensitivity Test Results	13-13	
Multi Slot Sensitivity Test Results	13-15	
Input Power Test Results	13-16	
Relative Transmit Power Test Results (MT8852B only)	13-17	
Carrier Frequency Stability and Modulation Accuracy Test Results 18	(MT8852B only)13-	
Differential Phase Encoding Test Results (MT8852B only)	13-20	
Sensitivity Test Results (MT8852B only)	13-21	
BER Floor Sensitivity Test Results (MT8852B only)		
Maximum Input Power Test Results (MT8852B only)	13-24	
Chapter 14. Auxiliary Commands	14-1	

CONNECT	(Connect to EUT Address)	
CONEUTN	IAME (Read EUT User Name on a Connection)	
CONNPKT	(Connection packet control)	
CONTIME	? (Connection time) (Option 15 required)	
DISCONN	ECT (Disconnect From Device)	
EUTRMTP	WR (Change the State of the EUT TX Power)	
FIXEDOFF	(Set Fixed Offset Value)	
GETEUTF	EAT (Obtain Supported Features from EUT)	
INQCANC	EL (Cancel an Inquiry)	
INQRSP?	(Obtain the Results of an Inquiry)	
INQUIRY (Perform an Inquiry)	
LOOPBAC	K (Perform a Loop Back Test Control Sequence)	
PATHDEL	(Delete an Entry from a Path Loss Table)	
PATHEDIT	Add or Change Entries in a Path Loss Table)	
PATHOFF	(Set Path Offset Mode)	
PATHRD (Read a Complete Path Loss Table)	
PATHTBL	(Set Path Offset Table)	
TESTMOD	E (Put the EUT into Test Mode)	
TSTDELA	Y (Test Control Delay)	
TXTEST (F	Perform a TX Test Control Sequence)	
WRDTY (V	Vrite the Dirty Parameter Settings to the Core)	
Appendix A.	Supported Features Format	A-1
Appendix B.	GPIB PC Card Setup	B-1
GPIB Devi	ce Template	B-1
GPIB Card	Settings	B-1

Chapter 1. About this Manual

Purpose and Scope of this Manual

This manual provides GPIB related information for the following three units:

- MT8850A Bluetooth Test Set
- MT8852A Bluetooth Test Set.
- MT8852B Bluetooth Test Set.

The MT8850A/52A/52B *Bluetooth* Test set supports the IEEE 488.2—1 992 GPIB standard. For further information about GPIB programming, refer to the IEEE 488.1/2 Standards documents.

All information in this manual applies equally to all model types unless otherwise stated, and in most cases this is signified by the use of "MT8850A/52A/52B".

Your Comments on this Manual

Every effort has been made to ensure that this manual is thorough, easy to use, and free from errors. However, to ensure continued improvement, we would welcome your comments on this, or any other Anritsu document.

Please contact us at the address below if you have any comments, good or bad, find any errors or omissions, or have any suggestions on how our documentation could be improved further.

bluetooth.support@eu.anritsu.com

Your comments will be logged and reviewed, and whenever possible, will be reflected in a subsequent release of the document.

Software Versions

This manual provides details of the remote operation of the following software versions:

MT8850A: 3.06

MT8852A: 3.06

MT8852B: 4.00

Some of the features documented in this manual may not be available to users of software releases prior to those detailed above. Check the version of software you are using by following the procedure below.

- 1. Power up the unit and press the **Config** hard key.
- 2. Select "MT8852B" and press the Sel key.
- 3. Select "Identity" and press the Sel key.
- 4. Check the number that displays to the right of "Version".

Notification of Software Release

The MT8850A/52A/52B software is periodically updated as new features are added to meet market demands. To receive automatic notification of software releases, send a blank e-mail with the subject heading of "MT8850A/52A/52B Software Notification Request" to <u>bluetooth.support@eu.anritsu.com</u>. You will receive an e-mail informing you that the new software is available for download from the site identified.

Using this Manual

A brief summary of each of the chapters in this manual is given below. If you are viewing the electronic version of this manual you can click on the chapter headings to jump to the chapter in question.

	Details of the manual itself, how it is structured, and how to use it.
Chapter 2:	General Information
	An explanation of the various operation modes.
Chapter 3:	GPIB Operation
	Details of mnemonic syntax, suffixes, and GPIB 488.2 registers.
Chapter 4:	Event Register and Mandatory Commands
	Details of the event register and mandatory commands.
Chapter 5:	General GPIB commands
	Details of the general GPIB commands.
Chapter 6:	System configuration
	Details of the GPIB commands associated with configuration of the system.
Chapter 7:	SCO Configuration (MT8852A/52B only)
	Details of the SCO configuration commands used to perform audio testing.
Chapter 8:	SCO Connections (MT8852A/52B only)
	Details of the SCO connect and disconnect commands.
Chapter 9:	AFH Measurement (MT8852A/52B only)
	Details of the Adaptive Frequency Hopping (AFH) configuration commands.
Chapter 10:	Signal Generator Mode and CW Measurement
	Details of the commands used to put the instrument into signal generator mode.
Chapter 11:	Test Configuration
	Details of the GPIB commands associated with configuring tests and setting test limits and parameters.

Chapter 12:	Running and Aborting Tests
	Details of the GPIB commands associated with running and aborting tests.
Chapter 13:	Reading Test Results Data
	Requests results of the test/script last run.
Chapter 14:	Auxiliary Commands
	Details of the auxiliary commands allowed over the GPIB interface to help development and demonstrations.
Appendix A:	Supported Features Format
	A table listing the EUT feature format mask as defined in the BT specification
Appendix B:	GPIB PC Card Setup
	The GPIB driver configuration recommended for reliable GPIB communication with the instrument.

Associated Documentation

In addition to this manual, the following document is also available on the CD shipped with the MT8852B *Bluetooth* Test Set.

Part number	Document
13000-00205	MT8852B Bluetooth Test Set Operation Manual

The pdf file listed above can be viewed using Adobe ReaderTM, a freeware program that can be downloaded from <u>http://www.adobe.com/</u>.

Command Presentation

The commands are presented in a structured manner as shown below.

Command format	For each command, the command name and syntax will be presented in a fixed pitch font. For example:
	OPCFG <ws><paraml><,><param2>[<,><param1>]</param1></param2></paraml></ws>
	See chapter 3 for a description of the syntax.
	Each of the allowable values for the command $\mbox{argument}(s),$ if any, will be described.
Remarks	This will provide an expanded description of the command, how to use the command, and programming hints or restrictions. Remarks will only be included where appropriate.
Related Commands	Commands that impact or relate to this command. Related commands will only be included where appropriate.
Example	An example of the command in use.
Response	An example of how the tester responds to a query command.

Abbreviations

EUT	Equipment Under Test
GPIB	General Purpose Instrument Bus
OP	Output power test
PC	Power control test
MI	Modulation characteristics test
IC	Initial carrier frequency test
CD	Carrier frequency drift test
SS	Single slot sensitivity test
MS	Multi slot sensitivity test
MP	Maximum input power sensitivity test
SCO	Synchronous Connection Oriented
EDR	Enhanced Data Rate
'DHx' packets	2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5 are EDR packets for the 2Mbs and the 3Mbs data rates
ERP	EDR relative transmit power test
ECM	EDR carrier frequency stability and modulation accuracy test
EDP	EDR differential phase encoding test
EBS	EDR sensitivity test
EFS	EDR floor sensitivity test
EMP	EDR Maximum Input Power test

Chapter 2. General Information

The MT8850A/52A/52B has a number of modes of operation these are: **script mode**, **single test mode**, **signal generator mode** and **CW measurement mode**. The testing modes, script and single test, are controlled by the operation mode (OPMD) command, and the signal generator and calibration modes are special Anritsu modes.

The Anritsu Bluetooth test set performs the following RF tests: -

Output power	(TRM/CA/01/C)		
Power control	(TRM/CA/03/C)		
Modulation characteristics	(TRM/CA/07/C)		
Initial carrier frequency	(TRM/CA/08/C)		
Carrier frequency drift	(TRM/CA/09/C)		
Single slot sensitivity	(RCV/CA/01/C)		
Multi-slot sensitivity	(RCV/CA/02/C)		
Maximum input power sensitivity	(RCV/CA/06/C)		
Relative transmit power test	(TRM/CA/10/C)		
Carrier frequency stability and modulation accuracy test	(TRM/CA/11/C)		
Differential phase encoding test	(TRM/CA/12/C)		MT8852B only
Sensitivity test	(RCV/CA/07/C)	ſ	
BER floor sensitivity test	(RCV/CA/08/C)		
Maximum input power test	(RCV/CA/10/C)	J	

Script Mode

Scripts are a set of one of each of the above RF tests. The operator configures which tests are run in a particular script and the parameters of each of the tests within a script.

There are ten scripts. The first two scripts have been predefined and can be read and run but not altered. The remaining eight scripts (3 to 10 inclusive) can be configured as required.

Scripts can be protected from updates using the script lock command. When a script is locked it cannot be altered unless that particular script is unlocked using the script unlock password (Scripts 1 and 2 are fixed).

See GPIB commands LOCK(?) ,UNLOCK and LKPASS.

Single Test Mode

In this mode a single test can be run either once or continuously from a single instruction.

Signal Generator Mode

This mode is to provide known calibrated outputs that can be used to test instruments when a *Bluetooth* link has not been established.

EDR Signal Generator Mode (MT8852B only)

This mode is to provide fixed data patterns at calibrated levels for the Enhanced Data Rate (EDR) modulation schemes.

CW Measurement Mode

This mode is used to measure a fixed frequency modulation signal. Power, frequency, and modulation can be measured.

EDR CW Measurement Mode (MT8852B only)

This mode is used to allow calibration of an incoming fixed frequency signal. DEVM and EDR modulation schemes can be measured.

GPIB Convention

The MT8850A/52A/52B *Bluetooth* Test Set follows IEEE488.2 conventions, with all the 488.2 mandatory commands supported.

Chapter 3. GPIB Operation

Mnemonic Syntax

Termination

GPIB commands must be terminated with either (or both): -

End Of String (EOS) byte, which is the '\n' or 0x0A character, or

End Of message Indicator (EOI) which is a line on the GPIB interface.

All strings returned by GPIB commands are terminated with both the **End of String (EOS)** byte, which is again the linefeed character, '\n' (0x0A), and the **End Of Message Indicator**, which is the **EOI** line on the GPIB interface.

Syntax

Each GPIB instruction is described using the following syntax.

OPCFG<ws><param1><,><param2>{<,><param3>}[<,><param4>]

- OPCFG Mnemonic (Command)
- <> Used to delimit parameters to add clarity.
- {} Conditional parameter must be used in certain cases and omitted in others depending on the choice selected for the other parameters.
- ws White space character (normally a space character, 0x20)
- [] Optional parameters can be used but not necessary.
- ; Message unit terminator. A GPIB message can comprise of a number of GPIB commands called command units. A GPIB command message can be made up of a number of command units separated by the semicolon (;).

Suffixes

All the commands that allow a level to be set as a value argument and are floating point values, can use the E-0x convention or a suffix multiplier. The GPIB standard [units] convention (i.e., MS for milliseconds, etc.) IEEE codes and formats have been implemented for the suffix units and multipliers. The suffix unit is always allowed but is not required and is shown in brackets where appropriate.

The following table lists the numeric data suffix mnemonics for the MT8850A/52A/52B *Bluetooth* test set. The suffixes are used when entering numeric data with GPIB commands (use of these codes is optional).

Suffix Multipliers		Suffix Units	
Definition	Mnemonic	Definition	Mnemonic
1E18	EX	Decibels	DB
1E15	PE	dB ref to 1 mW	DBM
1E12	т	dB ref to 1 mV	DBUV
1E9	G	Megahertz	MHZ
1E6	MA	Percent	PCT
1E3	к	Seconds	SEC
1E-3	М	Seconds	S
1E-6	U	Volts	V
1E-9	Ν	Watts	W
1E-12	Р	Hertz	HZ
1E-15	F	Kilohertz	KHZ
1E-18	А		

Character Case

The mnemonics and all the parameters use either upper or lower case characters unless specified otherwise.

GPIB 488.2 Registers

The following diagram shows the GPIB event and status registers. The meaning of each bit is described below.

Status Byte Register (STB) and Service Request Enable Register (SRE)

	Status byte
RQS/ MSS	When the Status byte is read via a Serial Poll operation this bit is RQS (Request Service). When the Status byte is read via the *STB? Command this bit is MSS (Master Summary Status). This bit has no function in the Service Request Enable Register.
	(Request service) This bit is set when one of the other bits in the status byte is set and the corresponding bit in the Service Request Enable Register (SRE) has been set. When this bit is set an SRQ is indicated over the GPIB interface. The SRQ is cleared by a serial poll, the status byte returned to the controller and the bit that caused the SRQ is cleared.
	(Master Summary Status) This bit is the inclusive OR of the bitwise combination (excluding bit 6) of the Status Byte register and the Service Request Enable register. Note that the *STB? Command does not alter the Status byte, nor will it clear an SRQ.
ESB	(Event status bit) When a bit is set in the event register and the corresponding bit has been set in the event status enable register (ESE) the ESB bit in the status register will be set.

	Status byte
MAV	(Message available) This bit is always set when there is data available to be read out from the output buffer and it is cleared when the output buffer is empty.
CHG	(Change indication) This bit is cleared at power ON initialisation, following a serial poll, or upon sending the *CLS command. This bit is set when one of the change bits has been set and the corresponding bit in the change status enable (CHE) register has been set.
EPS	(EUT Power Status) This bit is cleared at power ON initialisation or upon sending the *CLS command. This bit is set when the EUT power matches the maximum or minimum power. Use the status command to read whether max or min was reached.
ETF	(Equipment Test Fail) This bit is cleared at power ON initialisation or upon sending *CLS. This bit will be set to indicate a test failure if and only if the following conditions apply: One of the tests has failed (the instrument will set the appropriate bit in the ETF or EETF registers) and the appropriate bit within the ETE or EETE registers has been enabled by the user prior to running the test.
	See definitions of the ETF, EETF, ETE, EETE in this manual for more detail.
INS	(Instrument status) This bit is cleared on initialisation and when the *CLS command has been sent. This bit is set when one of the instrument status bits has been set and the corresponding bit in the instrument status enable (INE) register has been set.
	The Status Byte register is read via a Serial Poll or with the *STB? Command. It cannot be written to directly by the user. The Service Request Enable Register is written to with the *SRE command and read with the *SRE? Command. It is cleared by *CLS.

Standard Event Status Register (ESR) and Standard Event Status Enable Register (ESE)

	ESR and ESE bit definitions	
PON	Power On bit. This bit is set on power up of the device only and cleared if the instrument is reset or receives a *CLS command. This bit only indicates that a power on has occurred.	
URQ	Not used in the MT8850A	
CMD	Command error. Received an unrecognized command.	
EXE	Execution error. Could not execute a command. For example, a parameter is out of the allowable range.	
DDE	Device Dependent Error. The specific error can be found by using the ERRLST command.	
QYE	Query Error	
RQC	Request Control. GPIB controllers only.	
OPC	Operation Complete. When a program message that includes the *OPC command has been completed and the GPIB interface is idle with any responses read out of the output buffer this bit is set. For example, if the last command in a configuration sequence is *OPC, the OPC bit in the event status register will be set when that configuration list has been completed.	
The Standard Event Status Register is read with the *ESR?		

The Standard Event Status Register is read with the *ESR? Command. Reading the ESR clears it. The Standard Events Status Enable Register is written to with the *ESE command and read with the *ESE? command. Both registers are cleared by *CLS.

Equipment Under Test (EUT) Fail register (ETF) and Equipment Under Test (EUT) Fail Enable Register (ETE)

This EUT register is cleared on the start of a test or script. When a test completes, if it has failed the test limit parameters enabled to give a fail result the corresponding bit in this register will be set. These events can be programmed to provide an SRQ by setting the corresponding bit(s) in the Equipment Under Test Fail Enable Register (ETE).

	ETF and ETE bit definitions	
OP	Output power test fail bit. This bit indicates that the output power test failed the limit criteria set.	
PC	Power control test fail bit. This bit indicates that the power control test failed the limit criteria set	
IC	Initial carrier test fail bit. This bit indicates that the initial carrier test failed the limit criteria set.	
CD	Carrier drift test fail bit. This bit indicates that the carrier drift test failed the limit criteria set	
MC	Modulation index test fail bit. This bit indicates that the modulation index test failed the limit criteria set	
SS	Single slot sensitivity test fail bit. This bit indicates that the single slot sensitivity test failed the limit criteria set	
MS	Multi slot sensitivity test fail bit. This bit indicates that the multi slot sensitivity test failed the limit criteria set	
MP	Maximum input power test fail bit. This bit indicates that the maximum input power sensitivity test failed the limit criteria set	
The EUT Fail register is read with the *ETF?.		

Instrument Status Register (INS) and Instrument Status Enable Register (INE)

The INS register displays the present status of the instrument and can be used to provide SRQs for test or script completion and the connection status of the instrument by setting the corresponding bits in the INE register

	INS and INE bit definitions	
οντ	Instrument Over temperature Warning	
INQ	EUT Address Inquiry complete	
СМР	Script or test completion. This bit is cleared when a test or script has started and is set on its completion or termination.	
DIS	Disconnect. This bit is cleared when a connection has been made and set when disconnected.	
CON	Connection. This bit is set when a connection has been made and cleared when the connection no longer exists.	
	A Device Dependant Error (DDE in the ESR register) will indicate if an error occurred, causing the test or script to be aborted. The ERRLST command can be used to get the cause of the termination.	

The INS register is read with the *INS? Command. It cannot be cleared by reading it or by the *CLS command. The INE register is written to by the *INE command and read by the *INE? Command. It is cleared by *CLS.

Change Register (CHG) and Change Enable (CHE) Register (MT8852A/52B only)

The CHG register indicates when a change of state has occurred in the instrument, and can be used to provide SRQs by setting the corresponding bits in the CHE register.

The CHG register is read with the *CHG? command. It is cleared by reading it or with the *CLS command.

The CHE register is written to with the *CHE command and read by the *CHE? command. It is cleared by the *CLS command.

	CHG and CHE bit definitions
SCC	This bit is set to indicate when a SCO status has changed. Use the "STATUS" command to retrieve the present SCO status. (MT8852A/52B only)
USB	This bit is set to indicate when a USB attached status has changed. Use the "STATUS" command to retrieve the present USB status. (MT8852A/52B only)
AFH	This bit is set to indicate that a change has occurred to the channel map. Use "AFHCFG? CHANMAP" to retrieve the present state of the map.

EDR Equipment Under Test Fail register (EETF) and EDR Equipment Under Test Fail Enable Register (EETE) (MT8852B only)

The EDR EETF Test Fail register is cleared at the start of a test or script. If an EDR test fails any of the test limits applied, the appropriate bit within the EETF register is set (e.g. if the EDR Sensitivity test fails, the EBS bit is set to '1'). To program the GPIB to provide an SRQ event upon failure of any of the EDR tests, the appropriate bit(s) must be set within the EDR EETE Fail Enable register.

	EETF and EETE bit definitions
EMP	EDR Maximum Input Power test fail bit. This bit indicates whether or not the test failed the limits criteria set.
EFS	EBSCFG Floor Sensitivity test fail bit. This bit indicates whether or not the test failed the limits criteria set.
EBS	EDR Sensitivity test fail bit. This bit indicates whether or not the test failed the limits criteria set.
EDP	EDR Differential Phase Encoding test fail bit. This bit indicates whether or not the test failed the limits criteria set.
ECM	EDR Carrier Frequency Stability and Modulation Accuracy fail bit. This bit indicates whether or not the test failed the limits criteria set.
ERP	EDR Relative Transmit Power. This bit indicates whether or not the test failed the limits criteria set.
	The EDR EUT Fail register is read with the *EETF? query

GPIB on RS232

Version 1.1 or above of the control software supports the use of RS232 in addition to GPIB commands. Use the RS232 connector on the rear panel of the unit.

The test is for RS232 instruments with version 1.1 software or above. It is used to set communications RS232 connector on the rear panel supports all GPIB commands including IEEE 488.2 low level control and handshaking.

Hardware handshake CTS and RTS lines are used to control the flow of data in and out of the tester and must be available in the cable as hardware handshaking is always enabled. The RS232 cable used between the COM port on the PC and the connector on the rear of the MT8850A/52A/52B must be of a Null Modem type such as that supplied with the MT8850A/52A/52B itself.

The DTR and DSR lines are connected together within the tester.

Pin	Signal
1	NOT USED
2	RX Data
3	TX Data
4	DTR handshake signal
5	Signal ground
6	DSR handshake signal
7	RTS handshake signal
8	CTS handshake signal
9	NOT USED

The MT8850A/52A/52B *Bluetooth* test set communications serial connector pin outs are:

The serial interface baud rate can be set using the MT8850A/52A/52B System interface menu under the main "Config" menu. Available baud rates are; 1200, 2400, 4800, 9600 (default), 19200, 38400, 57600, and 115200. The other RS232 parameters are predefined as 8 bits, no parity and 1 stop bit and cannot be changed.

Commands are entered as with the GPIB interface, conforming to the GPIB command format. All GPIB commands are supported. There are some additional commands, specific to the serial interface that are prefixed with an exclamation mark (!). All GPIB type commands and command strings should be terminated with a new line character (0A hex). The special serial mode commands do NOT require a termination character.

Requested data is returned in the same format as with GPIB, but with a preceding 'R' and a terminating new line character.

SRQs are available, and are output as an SRQ message 'S' followed by a terminating new line character. When the SRQ message has been received, an "!SPL" command (equivalent to the GPIB serial poll) can be issued. The tester will respond with the serial poll data message, which is a single character, proceeded by 'P' and terminated by a new line character.

A device clear message !DCL can be sent to clear the tester input and output message queues, and terminate any GPIB or serial actions pending.

Summary of RS232 Commands

Mnemonic	Meaning	Comments
!DCL	Device clear	Clear all queues and terminates any pending actions
!SPL	Serial poll	Clears SRQ cause and returns the status byte
Р	Response to serial poll	Status byte
R	Return of requested data	

Chapter 4. Event Register and Mandatory Commands

This chapter provides details of the event register and mandatory commands. The commands are listed in alphabetical order as shown below.

- CHE (Change Enable Register) (MT8852A/52B only)
- CHG (Change Register) (MT8852A/52B only)
- CLS (Clear GPIB Status bytes)
- EETE (EDR EUT Fail Enable Register) (MT8852B only)
- EETF (EDR EUT Fail Register Query) (MT8852B only)
- ESE (Standard Event Status Enable)
- ESR (Standard Event Status Register Query)
- ETE (EUT Fail Enable Register)
- ETF (EUT Fail Register Query)
- IDN (Identification Query)
- INE (Instrument Status Enable Register)
- INS (Instrument Status Register Query)
- OPC (Operation Completed Indication)
- RST (Instrument Reset)
- SRE (Service Request Enable Register)
- STB (Status Byte Register Query)
- TST (Self Test Query)
- WAI (Wait to Continue)

CHE (Change Enable Register)

The bits in the Change Enable Register are the same as those in the Change Register. The two registers are bitwise AND'ed to determine whether to set the CHG bit in the Status Register.

Set command		
Command format	*CHE <ws><val></val></ws>	
	<val> decimal representation of an 8 bit binary mask</val>	
Remarks	<val> is the sum of the binary weights of each of the bits to be enabled. See the explanation in chapter 3 for a description of the bits in the Change and Change Enable registers.</val>	
Example	To enable bit 0 (SCO Connection)	
	*CHE 1	
Request command		
Command format	*CHE?	
Response	<val></val>	
	<val> is a decimal representation of the 8 bit mask as defined above.</val>	
Remarks	*CHE? Does not clear the Change Enable register. Use *CHE 0 or *CLS for this purpose.	

CHG (Change Register)

Returns the current state of the Change Register (CHG).

Request command		
Command format	*CHG?	
Response	<val></val>	
	<val> is a decimal representation of the binary value of the Change Register.</val>	
Example	A return value of 1 indicates that bit 0 (SCO Connection) is set.	
Remarks	See the explanation in chapter 3 for bit definitions of the Change Register. *CHG? Does not clear the Change Register.	

CLS (Clear GPIB Status Bytes)

Command format *CLS

Remarks

Clears all the GPIB status data structures, including the Event Status Register and Status Register, except for the MAV bit. *CLS does not clear the Output Queue.

EETE (EDR EUT Fail Enable Register) (MT8852B only)

The bits in the EDR EUT Fail Enable Register are the same as those in the EDR EUT Fail Register. The two registers are bitwise AND'ed to determine which failed test(s) will generate a SRQ event.

Set command

Command format	*EETE <ws><val></val></ws>	
	<val> decimal representation of an 8 bit binary mask</val>	
Remarks	<val> is the sum of the binary weights of each of the bits to be enabled. Refer to chapter 3 of this manual for a description of the bits in the EDR EUT Fail and EDR EUT Fail Enable registers.</val>	
Examples	To enable bit 3 (EDR Sensitivity)	
	*EETE 8	
	To enable bit 5 (EDR Maximum Input Power)	
	*EETE 32	
	To enable both bits	
	*EETE 40	
Request command		
Command format	*EETE?	
	<val> decimal representation of an 8 bit binary mask</val>	
Response	<val></val>	
	<val> is a decimal representation of the 8 bit mask as defined above.</val>	
Remarks	*EETE? Does not clear the EUT Fail Enable register. Use *EETE 0 or *CLS for this purpose.	

EETF (EDR EUT Fail Register Query) (MT8852B only)

Returns the current state of the EDR EUT Fail Register (EETF).

Command format	*EETF?	
Response	<val></val>	
	<val> is a decimal representation of the binary value of the EDR EUT Fail Register.</val>	
Example	A return value of 9 indicates that bit0 (EDR Relative Transmit Power) and bit3 (EDR Sensitivity) are set.	
Remarks	See chapter 3 for bit definitions of the EDR EUT Fail Register.	
	*EETF? Clears the EDR EUT Fail Register.	

ESE (Standard Event Status Enable)

The bits in the Standard Event Status Enable Register are the same as those in the Standard Event Status Register. The two registers are bitwise AND'ed to determine which standard event(s) will generate a SRQ.

Set Command				
Command format	*ESE<	*ESE <ws><val></val></ws>		
	<val></val>	decimal representation of an 8 bit binary mask		
Remarks	<val> is the sum of the binary weights of each of the bits to be enabled. Refer to chapter 3 of this manual for a description of the bits in the Standard Event Status and Standard Event Status Enable registers.</val>			
Examples:-	To ena	To enable bit 4 (Execution Error)		
	*ESE	16		
	To ena	To enable bit 5 (Command Error)		
	*ESE	32		
	To ena	To enable both bits		
	*ESE	48		
Request command				
Command format	*ESE?	*ESE?		
Response	<val></val>			
	<val> is above.</val>	s a decimal representation of the 8 bit mask as defined		
Remarks	*ESE? Does not clear the Standard Event Status Enable register. Use *ESE 0 or *CLS for this purpose.			
ESR (Standard Event Status Register Query)

Returns the current state of the Standard Event Register (ESR).

Request command	
Command format	*ESR?
Response	<val></val>
	<val> is a decimal representation of the binary value of the Standard Event Status Register.</val>
Example	A return value of 5 indicates that bits 0 (Operation Complete) and 2 (Query Error) are set.
Remarks	See chapter 3 for bit definitions of the Standard Event Status Register. *ESR? Clears the Standard Event Status Register.

ETE (EUT Fail Enable Register)

The bits in the EUT Fail Enable Register are the same as those in the EUT Fail Register. The two registers are bitwise AND'ed to determine which failed test(s) will generate a SRQ.

Set command			
Command format	*ETE <ws><val></val></ws>		
	<val> decimal representation of an 8 bit binary mask</val>		
Remarks	<val> is the sum of the binary weights of each of the bits to be enabled. Refer to chapter 3 of this manual for a description of the bits in the EUT Fail and EUT Fail Enable registers.</val>		
Examples	To enable bit 4 (Carrier Drift)		
	*ETE 16		
	To enable bit 5 (Initial Carrier)		
	*ETE 32		
	To enable both bits		
	*ETE 48		
Request command			
Command format	*ETE?		
	<val> decimal representation of an 8 bit binary mask</val>		
Response	<val></val>		
	<val> is a decimal representation of the 8 bit mask as defined above.</val>		
Remarks	*ETE? Does not clear the EUT Fail Enable register. Use *ETE 0 o *CLS for this purpose.		

ETF (EUT Fail Register Query)

Returns the current state of the EUT Fail Register (ETF).

Command format	*ETF?	
Response	<val></val>	
	<val> is a decimal representation of the binary value of the EUT Fail Register.</val>	
Example	A return value of 5 indicates that bits 0 (Maximum Input Power) and 2 (Single Slot Sensitivity) are set.	
Remarks	See chapter 3 for bit definitions of the EUT Fail Register. *ETF? Clears the EUT Fail Register.	

IDN (Identification Query)

Command format	*IDN?	
	(alternatively OI can be used)	
Response	A string is returned containing the manufacturer's name, the model number, the serial number, and the software revision. Commas separate the items.	
Example	ANRITSU,MT8850A,6K0000031,2.51	
Remarks	The operation of this command is identical to SYSCFG? IDENT, see chapter 6 for details.	

INE (Instrument Status Enable Register)

The bits in the Instrument Status Enable Register are the same as those in the Instrument Status Register. The two registers are bitwise AND'ed to determine which condition(s) will generate a SRQ.

Set command		
Command format	*INE <ws><val></val></ws>	
	<val> decimal representation of an 8 bit binary mask</val>	
Remarks	<val> is the sum of the binary weights of each of the bits to be enabled. Refer to chapter 3 of this manual for a description of the bits in the Instrument Status and Instrument Status Enable registers.</val>	
Example	To enable bit 3 (Inquiry Complete)	
	*INE 8	
	To enable bit 2 (Test or Script Complete)	
	*INE 4	
	To enable both bits	
	*INE 12	
Request command		
Command format	*INE?	
Response	<val></val>	
	<val> is a decimal representation of the 8 bit mask as defined above.</val>	
Remarks	*INE? Does not clear the Instrument Status Enable register. Use *INE 0 or *CLS for this purpose.	

INS (Instrument Status Register Query)

Returns the current state of the Instrument Status Register (INS).

Request command		
Command format	*INS?	
Response	<val></val>	
	<val> is a decimal representation of the binary value of the Instrument Status Register.</val>	
Example	A return value of 5 indicates that bits 0 (Connected) and 2 (Test or Script Complete) are set.	
Remarks	See chapter 3 for bit definitions of the Instrument Status Register. *INS? Does not clear the Instrument Status Register.	

OPC (Operation Completed Indication)

These commands generate indications when all pending operations are completed. An operation is complete when all input messages processed and all responses have been written into the GPIB Output queue.

Set command

Sets the OPC Event bit in the Standard Event Status Register when all pending operations are completed.

Command format	*OPC
Example	OPMD SCRIPT; SCPTSEL 3; *OPC
Remarks	The OPC bit will be set in the ESR when the OPMD and SCPTSEL commands have been completed.

Request command

Places an ASCII character '1' in the GPIB Output queue when all pending operations are completed.

Command format	*OPC?
Example	OPMD SCRIPT; SCPTSEL 3; *OPC?
Remarks	An ASCII '1' will be placed in the Output queue when the OPMD and SCPTSEL commands have been completed.

RST (Instrument Reset)

Resets the MT8850A/52A/52B to its default state

Command format *RST

Remarks

The GPIB Address is not changed. Neither are the GPIB Status registers and Input/Output queues cleared. The effect of this command is the same as pressing the PRESET key on the front panel.

SRE (Service Request Enable Register)

The bits in the Service Request Enable Register (SRE) are the same as those in the Status Byte Register (STB), Except for bit 6, which is not used in the SRE. With the exception of bit 6 the two registers are bitwise AND'ed to determine which condition(s) will generate a SRQ.

Set command		
Command format	*SRE <ws><val></val></ws>	
	<val></val>	decimal representation of an 8 bit binary mask
Remarks	<val> is enabled bits in th that bit (</val>	the sum of the binary weights of each of the bits to be Refer to chapter 3 of this manual for a description of the Status Byte and Service Request Enable registers. Note Should never be set.
Examples	To enable bit 4 (Message Available)	
	*SRE 1	6
	To enable bit 2 (Internal Error)	
	*SRE 4	
To enable both bits		ble both bits
	*SRE 2	0
Request command		
Command format	*SRE?	
Response	<val></val>	
	<val> is above.</val>	a decimal representation of the 8 bit mask as defined
Remarks	*SRE? I *SRE 0	Does not clear the Instrument Status Enable register. Use or *CLS for this purpose. Bit 6 will never be set.

STB (Status Byte Register Query)

Returns the current state of the Status Byte Register (STB) with the RQS bit replaced by the MSS bit (bit 6).

*STB?
<val></val>
<val> is a decimal representation of the binary value of the Instrument Status Register.</val>
A return value of 70 indicates that bits 1 (EUT Fail), 2 (Internal Error Bit), and bit 6 (Master Summary Status) are set.
See chapter 3 for bit definitions of the Status Byte Register. *STB? Does not clear the Instrument Status Register.

TST (Self Test Query)

Invokes an instrument Self-Test cycle and places the results in the Output Queue

Command format	*TST?
Response	"ALL_TESTS_PASSED"
	"SELFTEST_FAILED"
Remarks	This command differs from STERR in that it invokes a Self-Test before returning the results whereas STERR simply returns the results of a previous Self-Test.

WAI (Wait to Continue)

This mandatory IEE488.2 command is decoded but produces no action because the Overlapping Commands feature is not implemented on MT8850A/52A/52B.

Command format *WAI

Chapter 5. General GPIB commands

This chapter provides details of the general GPIB commands. The commands are listed in alphabetical order as shown below.

- BOOTSTATUS
 Initial startup self test status request
- CONT Continue after self test
- ERRLST Error list
- EUTINIT Bluetooth Slave Mode
- EUTMAXPWR Send EUT to max power control
- LKPASS Update lock/unlock password
- LOCK Script lock
- OPMD Operation mode
- SCPTCFG Configure script
- SCPTNM Set script name
- SCPTRST Reset script
- SCPTSEL Select script
- SCRIPTMODE Script Mode
- STATUS
 Status command
- STERR Request POST or *TST? Results
- TSTPAUSE Test Pause
- TXPWR Transmitter Power Level
- UNLOCK Script unlock

BOOTSTATUS? (Startup Self Test Status Request)

Command format	BOOT	BOOTSTATUS?	
Remarks	On st warni returr	artup the instrument performs a self test. If the self test fails a ng screen is displayed indicating the cause. This command as the status of the instrument during power up.	
	0	Passed self test. Instrument running.	
	1	Startup running self test.	
	-1	Self test FAILED.	
	Durin BOO comn the se	During the startup procedure all commands except STERR, BOOTSTATUS?, CONT and GPIB 488.2 event and status commands will produce a GPIB execution error. STERR will return the self test results.	
Related Commands	STER	STERR. CONT	

CONT (Continue After Self Test)

Command format	CONT
Remarks	This command will allow the system to continue the startup sequence if there are self test failures other than DSP errors.
Related Commands	STERR, BOOTSTATUS?

ERRLST (Error List)

This command reads out and clears the recorded error states latch. The error states latch records an error occurring and retains the error states until the instrument is reset, the power is cycled or the error states latch is read using this command. The errors are indicated via the DDE bit of the event register (ESR).

Command format ERRLST

Response	ABCCDDEFGHHIJJ!KKKKKKK!LLLLLLL!MMMMMMMM!NNNNNN!				
A	CONNECTION ALREADY EXISTS	0 – No previous connection1 – Connection already exists			
В	EUT TEST MODE STATE	0 – EUT Test Mode enabled 1 – EUT Test Mode not enabled			
CC	EUT HCI ERROR	00 – OK XX – 2 digit error code (EUT controlled via RS232 interface)			
DD	INTERNAL HCI ERROR	00 – OK XX – 2 digit error code			
Е	INTERNAL SYNC ERROR	0 – OK 1 – Internal HCI synchronisation error			
F	EUT SYNC ERROR	0 – OK 1 – EUT HCI synchronisation error (control via RS232)			
G	REQUEST FAILED	0 – OK 1 – Request failed (system busy)			
HH	DSP STATUS	 1 – Nequest failed (system busy) 00 – OK 01 – Searching channel 02 – Searching sync word 03 – Incorrect packet length 04 – No payload 05 – Auto ranging 06 – Incorrect packet type 08 – Over range 09 – Under range 10 – Invalid payload 11 – Error finding start of packet using power profile 12 – Error locating P0/GFSK sync word 13 – Location of P0/GFSK sync word exceeds allowed limits 14 – Error locating EDR sync word 15 – Location of EDR sync word exceeds allowed limits 16 – Error decoding the packet type field 17 – Modulation mode of PI/4-DQPSK or 8DPSK not specified 18 – Specified (pi/4-DQPSK) modulation mode does not agree with detected packet type 19 – Specified (8DPSK) modulation mode does not agree with detected packet type 20 – Invalid packet type decoded 21 – Unknown packet type decoded 			

22 – Expected and measured packet lengths

do not match

23 - Insufficient blocks in packet for

measurement

Note: Setting of the DSP status code will not set the DDE bit of the event register.

I	EUT BT ADDRI	ESS	0 – OK
			1 – No EUT <i>Bluetooth</i> Address set (in Manual
			mode)
JJ	HCI COMM ST	ATUS	00 – OK
			01 – Unknown HCI command
			02 – No connection
			03 – Hardware failure
			04 – Paging timeout
			05 – Connection timeout
			06 – Unsupported feature parameter
			07 – Connection ended by user
			08 – Low resource connection ended
			09 – Power Off connection ended
			10 – Local host connection ended
			11 – Unsupported remote feature
			12 – Role change not allowed
			13 – LMP response timeout
			14 – IQ modem DAC saturation
KKKKKK	K	Internal core	error text (variable length)
LLLLLL		EUT core err	or text (variable length)
MMMMM	MM	Last GPIB co length)	mmand that caused a Command error (variable
NNNNN	IN	Last GPIB co length)	mmand that caused a Execution error (variable

EUTINIT (Bluetooth Slave Mode)

This command puts the MT8850A/52A/52B into *Bluetooth* Slave mode. It is the equivalent of the Make me an EUT function on the Configuration/System Features/Connection Control menu.

Command format EUTINIT

Remarks To return the MT8850A/52A/52B to normal (Master) mode, use *RST.

EUTMAXPWR (Send EUT to Max Power Control)

This command enables or disables the setting of an EUT to maximum power at the start of a test even if the EUT reports that it supports power control.

Set command

Command Format	EUTMAXPWR <ws><script></script></ws>		
----------------	--------------------------------------	--	--

LKPASS (Update Lock/Unlock Password)

This command enables the operator to change the script lock password. The password is a number between 1 and 65535. All spaces will be removed.

Change lock password

Command format	LKPASS <ws><old password=""><,><new password=""></new></old></ws>		
	<old password=""> Present lock/unlock password <new password=""> New lock/unlock password</new></old>		
Example	To change the present password "1234" to "6543" the command would be:		
	LKPASS 1234,6543		

LOCK (Script Lock)

This command will lock a script so that it cannot be altered unless it is unlocked with the unlock command. The enquiry version of this command will return TRUE or FALSE indicating whether a script has been locked.

Set command

Command format	LOCK <ws><script number=""></script></ws>		
----------------	---	--	--

OPMD (Operation Mode)

This command configures the operation mode of the instrument.

Set command

Change the mode of the instrument between script and signal generator mode.

Command format

OPMD<ws><operation mode>{<,><test>}

<operation mode>

SCRIPT	script mode
STEST	single test mode
SIGGEN	signal generator mode
ESIGGEN	EDR signal generator mode
CWMEAS	CW measurement mode
ECWMEAS	EDR CW measurement mode

Selected script test <test>

	OP	Output power
	PC	Power control
	MI	Modulation Index
	IC	Initial carrier
	CD	Carrier drift
	SS	Single slot sensitivity
	MS	Multi slot sensitivity
	MP	Max input power
	ERP	EDR Relative transmit power test (MT8852B only)
	ECM	EDR Carrier frequency stability and modulation accuracy test (MT8852B only)
	EDP	EDR Differential phase encoding test (MT8852B only)
	EBS	EDR Sensitivity test (MT8852B only)
	EFS	EBSCFG floor sensitivity test (MT8852B only)
	EMP	EDR Maximum Input Power test (MT8852B only)
Remarks	<test> i Changi modes</test>	s required only when the operation mode> is STEST. ng from SIGGEN or ESIGGEN mode to either of the other will cause a reset of the internal <i>Bluetooth</i> core.
	Note the can be made to	at in single test mode, only the test that has been selected configured. An execution error is returned if an attempt is p configure any other tests.

Example 1	Set to script mode. OPMD SCRIPT
Example 2	Set to single test mode, with the initial carrier test selected
	OPMD STEST,IC
Example 3	Set to single test mode, with the EDR differential phase encoding test selected
	OPMD STEST, EDP

Request command

Request the present operation mode of the test set.

Command format	OPMD?
Response	Response is in the form of the command to set that state.
Example	If the operation mode is single test mode with the power control test selected the command would be:
	OPMD?
Response	OPMD STEST, PC

SCPTCFG (Configure Script)

This command is used to select which tests are run as part of a script. All scripts and their tests are independent allowing up to 8 uniquely specified sets of tests to be programmed into the MT8850A/MT8852B, or up to 14 for the MT8852B.

Set command

Command format	SCPTCFG <ws><script number=""></script></ws>			
----------------	--	--	--	--

Request command

This command outputs the test configuration of this script.

Command format	SCPTCFG? <ws><script< th=""><th>number></th></script<></ws>		number>
	<script number=""></script>		

Response	The response is a list of ON or OFF for each test in the following
	order separated by commas.

- Output power
- Power control
- Modulation Index
- Initial carrier
- Carrier drift
- Single slot sensitivity
- Multi slot sensitivity
- Max input power
- EDR Relative Transmit Power test (MT8852B only)
- EDR Carrier Frequency stability and Modulation accuracy test (MT8852B only)
- EDR Differential Phase Encoding test (MT8852B only)
- EDR Sensitivity test (MT8852B only)
- EDR BER Floor Sensitivity test (MT8852B only)
- EDR Maximum Input Power test (MT8852B only)
- **Example** To read the configuration of script 5 where all tests are selected except power control the command would be:
 - SCPTCFG? 5

SCPTNM (Set Script Name)

Set or request the script name. The Anritsu predefined scripts names can not be set.

Set command			
Command format	SCPTNM <ws><script number=""></script></ws>		

SCPTRST (Reset Script) (MT8852B only)

This command resets a script to its default values.

Set command Command format SCPTRST<ws><script number> <script number> 1 to 10 | 'ALL' Remarks 'ALL' will reset all 10 test scripts at once. Example 1 Reset script 3. SCPTRST 3 SCPTRST 3 Example 2 Reset all scripts SCPTRST ALL SCPTRST ALL

SCPTSEL (Select Script)

Set or request the selected script to be executed. If this command is sent when in single test mode the presently selected test in the new script will now be selected.

Set command		
Command format	SCPTSEL <ws><script number=""></script></ws>	

SCRIPTMODE (Script Mode)

This command determines how the tests within the specified script are run.

Set command

Command Format	SCRIPTMODE <ws><script number=""></script></ws>	
----------------	---	--

STATUS (Status Command)

This command requests the instrument status.

Command format STATUS

Response ABCCDDEFGHIJKLMNNN

- A 0 = Script mode
 - 1 = Single test mode
 - 2 = Basic Rate Signal generator mode (GFSK)
 - 3 = CW Measurement mode
 - 4 = AFH measurement
 - 5 = EDR Signal generator mode (MT8852B only)
 - 6 = EDR CW Measurement mode (MT8852B only)
- B 0 = Not in single remote test state
 - 1 = In single remote test state
- CC Script number selected: $1 \rightarrow 10$
- DD Test selected :
 - OP = Output power test
 - PC = Power control test
 - MI = Modulation characteristics test
 - IC = Initial carrier test
 - CD = Carrier drift test
 - SS = Single slot sensitivity test
 - MS = Multi slot sensitivity test
 - MP = Maximum input power sensitivity test

EX = Extended EDR tests (see string 'NNN' for selected EDR test) (MT8852B only)

- E 0 = Not connected
 - 1 = Connected
- F Receiver Range: $1 \rightarrow 6 | A = Auto$
- G 10 MHz reference source:

0 = Internal

1 = External

- H EUT power state:
 - 0 = EUT at minimum power
 - 1 = EUT at intermediate power
 - 2 = EUT at maximum power
- I SCO Channel 1:
 - 0 = Disconnected
 - 1 = Connected
- J SCO Channel 2:
 - 0 = Disconnected
 - 1 = Connected
- K SCO Channel 3:
 - 0 = Disconnected
 - 1 = Connected
- L EUT test mode:
 - 0 = EUT in normal mode
 - 1 = EUT in test mode
- M USB Connection status:
 - 1 = USB device attached
 - 2 = USB device removed
 - 3 = Non *Bluetooth* USB device attached
- NNN EDR Test selected:
 - ERP = EDR Relative transmit power test (MT8852B only)
 - ECM = EDR Carrier frequency stability and modulation accuracy test (MT8852B only)
 - EDP = EDR Differential phase encoding test (MT8852B only)
 - EBS = EDR Sensitivity test (MT8852B only)
 - EFS = EDR floor sensitivity test (MT8852B only)
 - EMP = EDR Maximum Input Power test (MT8852B only)

STERR (Request POST or *TST? Results)

This command returns the results of the most recent Self-Test. It does not initiate a Self-Test itself.

Command format	STERR
Response	Where the Self-Test has completed without failures the response is the following string:-
	ALL TESTS PASSED
	Where the Self-Test has failed, the response is a list of those items which have failed. If there is more than one item they are separated by commas.
Example	ARMBOOT, VOLRAM 10FFF0F, DSPIF
	Indicates the Self-Test failed with ARM Boot checksum, Volatile RAM, and DSP interface errors.
	A list of self test items is shown in the table below.
Related Commands	BOOTSTATUS?, CONT, *TST

Self Test Items

The following is a list of all Self-Test items. For more information see the MT8850A/52A/52B Service Manual.

Self test item	Meaning
FLASHCSUM	Flash Code checksum error.
CALCSUM	Calibration Data checksum error.
PERSONCSUM	Personality checksum error.
ARMBOOT	ARM Boot checksum error.
ARMCD	ARM Code checksum error.
FPGACSUM	Virtex FPGA checksum error.
ARMBT	ARM BT checksum error.
ARMDSP	ARM DSP checksum error.
ARMSPARTAN	ARM SPARTAN checksum error.
VOLRAM <ws><a><bbbbbb></bbbbbb></ws>	Volatile RAM. <a> indicates the type of test that failed and <bbbbbb> is the list of addresses where the test failed.</bbbbbb>
NONVOLRAM	Non-Volatile RAM
DPRAM <ws><a><bbbbbb></bbbbbb></ws>	CPU Dual Port RAM. <a> indicates the type of test that failed and <bbbbbb> is the list of addresses where the test failed.</bbbbbb>
DPRAMIF <ws><a><bbbbbb></bbbbbb></ws>	IF Dual Port RAM. <a> indicates the type of test that failed and <bbbbbb> is the list of addresses where the test failed.</bbbbbb>
DSPRAM <ws><a><ccccc></ccccc></ws>	DSP RAM. <a> indicates the type of test that failed, indicates the type of RAM where the failure occurred and <ccccc> is the list of addresses where the test failed.</ccccc>

MT8850A/MT8852A/MT8852B

Self test item	Meaning
DSPIF	DSP Interface error.
UART <ws><a><bb></bb></ws>	UART's. <a> indicates the type of test that failed and <bb> is the address on which the failure occurred.</bb>
HCIDPRAM <ws><a><bbbbbb></bbbbbb></ws>	ARM $\leftarrow \rightarrow$ CPU Dual Port RAM. <a> indicates the type of test that failed and <bbbbbb> is the list of addresses where the test failed</bbbbbb>
ARMST <ws><a></ws>	ARM Self Test. <a> indicates the result of the self test
ARMHS	ARM handshake jumpers
DISPLAY	Display interface communication error
KBD	Keyboard interface communication error
DSPERR <ws><aaaa></aaaa></ws>	DSP Startup Error. <aaaa> indicates at which stage the error occurred.</aaaa>
NORFPCB	RF PCB communication error
NOTCALED	No Calibration Data found
NOEDRREFPWR	Invalid EDR reference power table
NOEDRIQCAL	Invalid EDR IQ modulator correction tables
VIRTEX <ws><aaaa></aaaa></ws>	Virtex loading error. <aaaa> indicates at which stage the error occurred.</aaaa>
SPARTAN <ws><aaaa></aaaa></ws>	Spartan loading error. <aaaa> indicates at which stage the error occurred.</aaaa>
ARMINIT	ARM initialization error
TEMPWARN	Over temperature warning

TSTPAUSE (Test Pause)

This command specifies whether a Test Pause LMP test control is used between changes in a test control format.

Set	command
-----	---------

Command Format	TSTPAUSE <ws><script number=""></script></ws>	
----------------	---	--

TXPWR (Transmitter Power Level)

This command sets the default transmitter power level for a script. It is the power level at which the connection and any inquiry are made. Individual tests within the script may modify the power level for their own purposes but the level will be returned to the script default on completion of the test. If a connection already exists then executing a TXPWR command will have immediate effect. For this reason do not use TXPWR whilst a test is in progress.

Set the Transmitter Power Level

Command format	TXPWR <ws><script number=""></script></ws>	
----------------	--	--

UNLOCK (Script Unlock)

This command will unlock a locked script so that it can be altered. If the unlock failed or the script is already unlocked an execution error will be indicated

Set command		
Command format	UNLOCK <ws><script number=""></script></ws>	

Chapter 6. System configuration

This chapter provides details of the system configuration command and the associated parameters. The commands are listed in alphabetical order as detailed below.

SYSCFG (Set System Configuration)

Command format SYSCFG<ws><config selection>[<,><parameters>.....]

<config selection>

- AUTH Authentication settings
- BNCOUTPUT Rear panel output
- BTADDR Tester Bluetooth address
- CONFIG Tester configuration
- DISPSOUND Tester display and sound control
- EUTADDR EUT address
- EUTFEAT EUT supported features
- EUTNAME EUT user friendly name request
- EUTPSRM EUT page scan repetition mode
- EUTRS232 EUT RS232 HCI set up
- EUTSRCE EUT address source
- HWINFO Hardware information
- IDENT Tester identity
- INQSET Inquiry set up
- OPTSTATUS Option status
- PAGSET Page scan and timeout
- PAGETO Page timeout setting
- PINCODE PIN code.
- PINLENGTH PIN code length.
- SCPTSET Script set up
- VERDATE Tester firmware date and time stamp
- VERNUM Tester firmware version numbers

AUTH (Authentication Settings)

Set command

This command enables/disables the connection authentication.

Command format	<pre>SYSCFG<ws><auth><,><state>,<variable></variable></state></auth></ws></pre>		
Variable	ON Enable Connection Authentication		
	OFF Disable Connection Authentication		
Example	SYSCFG AUTH, STATE, ON		
Request command			
This command reads ena	able/disabled the connection authentication.		
Command format	SYSCFG? <ws>AUTH,STATE</ws>		
Example	SYSCFG? AUTH,STATE		
Response	SYSCFG AUTH, STATE, ON		

BNCOUTPUT (Rear Panel Output)

This command defines the output directed to the rear panel BNC outputs.

The allowable selections are restricted as follows:

- Output 1 cannot be RXON and Output 2 cannot be TXON.
- If Output 1 is TXON, output 2 can be any value.
- If Output 2 is RXON, output 1 can be any value.
- Otherwise Output 1 and Output 2 must be set to the same value.

Set command

Command format	SYSCFG <ws>BNCOUTPUT<,><output 1=""><,><output 2=""></output></output></ws>	
	<output></output>	
	TXON (output 1 only)	
	RXON (output 2 only)	
	CH0PULSE	
	TXDATA	
	RXDATA	
	CORRFIRED	
Example	To set the rear panel output to TX ON on output 1 and Correlator fired on Output 2, the command would be:	
	SYSCFG BNCOUTPUT, TXON, CORRFIRED	
Request command		
Command format	SYSCFG? <ws>BNCOUTPUT</ws>	
Response	The information is returned in the order:	
	<pre><output 1="">,<output 2=""></output></output></pre>	
Example	If the information is as follows, the response would be:	
	Output 1 – TX on Output 2 – RX on	
Response	SYSCFG BNCOUTPUT, TXON, RXON	

BTADDR (Tester Bluetooth Address)

This command allows the operator to read the MT8850A/52A/52B Bluetooth address.

Request command	
Command format	SYSCFG? <ws>BTADDR</ws>
Example	SYSCFG? BTADDR
Response	Example, if the BT address is $0x000123ABCDEF$, the response would be
	000123ABCDEF

CONFIG (Tester Configuration)

Under this system configuration section there are the following parameters: Tester GPIB address Tester communications RS232 baud rate Tester rear panel RS232 mode Tester measurement power range hold Tester measurement power range hold Tester measurements done on POLL/NULL sequence Tester's default TX power level Measurement bandwidth setting Tester's link timeout

GPIB (Tester GPIB Address)

Set command		
Command format	SYSCFG <ws>CONFIG<,>GPIB<,><address></address></ws>	
	<address></address>	1 to 30 (Default 27)
Remarks	If the GPIB addres must be performe	ss is changed, any further GPIB communication d to the new GPIB address.
Example	To set the GPIB address to 5 the command would be:	
	SYSCFG CONFIG	,GPIB,5
Request command		
Command format	SYSCFG? <ws>CO</ws>	NFIG<,>GPIB
Response	The response is restate.	eturned in the form of the command to set that
Example	SYSCFG? CONFI	G,GPIB
	If the GPIB addres	ss is 6 the response would be:
	SYSCFG CONFIG	,GPIB,6

Tester Communication RS232 Baud Rate

Set command	
Command format	SYSCFG <ws>CONFIG<,>RS232<,><baud rate=""></baud></ws>
	<baud rate=""></baud>
	1200
	2400
	4800
	9600
	19200
	38400
	57600
Example	To set the baud rate to 19200 the command would be:
	SYSCFG CONFIG,RS232,19200
Request command	
Command format	SYSCFG? <ws>CONFIG<,>RS232</ws>
Response	The response will be returned in the form of the command to set that state.
Example	SYSCFG? CONFIG,RS232
Response	If the baud rate is 38400 the response would be:
	SYSCFG CONFIG,RS232,38400

RSMODE (Tester Rear Panel RS232 Mode)

This command will set the rear panel RS232 into one of the following modes:

EXTCOM EXTHCI	The connector can be used for GPIB type control and communication The connector is used to send HCI commands directly to the <i>Bluetooth</i> core. In this mode the standalone MT8850A/52A/52B can not communicate to the internal <i>Bluetooth</i> core. In this mode the baud rate s 57600		
Set command			
Command format	SYSCFG <ws>CONFIG</ws>	SYSCFG <ws>CONFIG<,>RSMODE<,><mode></mode></ws>	
	<mode> EXT EXT</mode>	-COM FHCI	
Example	To set the connector to command would be:	To set the connector to be used for GPIB commands the command would be:	
	SYSCFG CONFIG, RSI	NODE, EXTCOM	
Request command	d		
Command format	SYSCFG? <ws>CONFI</ws>	G<,>RSMODE	
Response	The response will be r that state.	eturned in the form of the command to set	
Example	SYSCFG? CONFIG,R	SMODE	
Response	If the mode is EXTHC	the response would be:	
	SYSCFG CONFIG,RS	NODE, EXTHCI	

Tester Measurement System Power Range

This command allows the power range of the measurement system to be controlled if required. There are six power ranges plus auto ranging which is the default.

Set command		
Command format	SYSCFG <ws>CONFIG<,>RANGE<,><setting></setting></ws>	
	<setting< td=""><td>g></td></setting<>	g>
	0	Hold present range
	1	Hold on range 1
	2	Hold on range 2
	3	Hold on range 3
	4	Hold on range 4
	5	Hold on range 5
	6	Hold on range 6
	AUTO	Auto ranging
Example	To set	the range to auto the command would be:
	SYSCF	G CONFIG, RANGE, AUTO
Request command		
Command format	SYSCF	G? <ws>CONFIG<,>RANGE</ws>
Response	The rest state.	sponse is returned in the form of the command to set that
Example	SYSCF	G? CONFIG, RANGE
Response	If the ra	ange was held at range 1 then the response would be:
	SYSCF	G? CONFIG,RANGE,1

Mod Index Setting

The MT8850A/52A/52B default setting for the modulation index of the communication channel is 0.32. This command allows this value to be changed.

Set command		
Command format	SYSCFG <ws>CONFIG<,>MODINDEX<,><setting></setting></ws>	
	<setting></setting>	0.25 to 0.40
Example	To set the mod in	dex to 0.38 the command would be:
	SYSCFG CONFIG	,MODINDEX,0.38
Request command		
Command format	SYSCFG? CONFI	G,MODINDEX
Response	The response is restate.	eturned in the form of the command to set that
Example	SYSCFG? CONFI	G,MODINDEX
Response	If the Mod index w	vas set to 0.32 then the response would be:
	SYSCFG CONFIG	,MODINDEX,0.32

Poll/Null Measurement Mode

This command has been maintained to ensure compatibility with software version 1.00. It should not be used in any of the new test programs and ideally should be replaced in existing test programs with the SCRIPTMODE command detailed in chapter 5 of this manual.

This command allows the MT8850A/52A/52B to make measurements on the POLL/NULL sequence used to maintain the *Bluetooth* link rather than using Test mode. This allows some measurements to be carried out even if test mode has not been fully implemented.

This command puts every script into NULL packet mode. Refer to the SCRIPTMODE command description.

Set	comman	d
-----	--------	---

Command format	SYSCFG <ws>CONFIG<,>NPMODE<,><setting></setting></ws>	
	<setting></setting>	ON: Sets scripts 3 to 10 to NULL packet mode. OFF: Sets scripts 3 to 10 to standard mode.
Example	To set the null packet measurement mode to ON the command would be:	
	SYSCFG CONFIG	, NPMODE , ON
Request command		
Command format	SYSCFG? <ws>CONFIG<,>NPMODE</ws>	
Remarks	If scripts 3 to 10 a otherwise OFF.	re all in NULL packet mode, this will return ON,
Response	The response is restate.	eturned in the form of the command to set that
Example	SYSCFG? CONFI	G,NPMODE
Response	If the null packet r would be:	neasurement mode was OFF the response
	SYSCFG CONFIG	,NPMODE,OFF

Filter Setting

This command is used to change the measurement bandwidth when performing the frequency receiver tests (Initial Carrier, Carrier Drift and Modulation Index). The default measurement bandwidth is set to 1.3 MHz, but this can be changed to 2 MHz.

Set command

Command format	SYSCFG <ws>CONFIG,FILTER,<type></type></ws>	
	where $$ is 2MHZ or 1.3MHZ	
Example	Set the measurement bandwidth to 2MHZ:	
	SYSCFG CONFIG, FILTER, 2MHZ	
Request command		

To request the filter type currently being used, use the command:

Command format	SYSCFG? <ws>CONFIG,FILTER</ws>
Example	SYSCFG? CONFIG, FILTER
Response	SYSCFG CONFIG, FILTER, 2MHZ

Link Timeout Setting

This command sets the amount of time the unit waits after loosing a (*Bluetooth*) link before abandoning the connection. This command is used before a link is made.

Set command

Command format	SYSCFG <ws>CONFIG<,>LKTIMO<,><timeout></timeout></ws>
Timeout	1 to 40 seconds. Default is 10. (Integers only)
Example	To set the link supervision timeout to 25 seconds: SYSCFG CONFIG,LKTIMO,25
Request command	
Command format	SYSCFG? <ws>CONFIG<,>LKTIMO</ws>
Response	The response is in the form of the command to set that value
Example	If the timeout value is 15 seconds the response would be SYSCFG CONFIG.LKTIMO.15
DISPSOUND (Tester Display and Sound Control)

This group of commands configures the following:

Display contrast (CONTRAST) Key click (KEY) Error beep on illegal entry (ENTRY) User text display (TEXT, TEXTS) Follow test mode (FOLTST)

Display Contrast

This command allows the contrast of the MT8850A/52A/52B LCD contrast to be altered.

Set command		
Command format	SYSCFG <ws>DISPSOUND<,>CONTRAST<,><contrast></contrast></ws>	
	<contrast></contrast>	
	1 to 10	
	UP	for increment by one
	DOWN	for decrement by one
Example	To set the contrast to 8 th	e command would be:
	SYSCFG DISPSOUND,CC	NTRAST,8
Request command		
Command format	SYSCFG? <ws> DISPSOU</ws>	ND<,>CONTRAST
Response	The response is returned state	in the form of the command to set that
Example	SYSCFG? DISPSOUND<,	>CONTRAST
Response	If contrast was 5 the resp	onse would be:
	SYSCFG DISPSOUND<,>	CONTRAST, 5

Key Click

Set command

This command turns ON or OFF the instrument key click

Command format	SYSCFG <ws> DISPSOUND<,>KEY<,><state></state></ws>
	<state> ON or OFF</state>
Example	To turn on the key click the command would be:
	SYSCFG DISPSOUND, KEY, ON
Request command	
Command format	SYSCFG? <ws> DISPSOUND<,>KEY</ws>
Response	The response is returned in the form of the command to set that state
Example	SYSCFG? DISPSOUND, KEY
Response	If key click is OFF the response would be:
	SYSCFG DISPSOUND, KEY, OFF

Error Beep on Illegal Entry

Set command	
Command format	SYSCFG <ws> DISPSOUND<,>ENTRY<,><state></state></ws>
	<state> ON or OFF</state>
Example	To set the entry error beep on the command would be:
	SYSCFG DISPSOUND, ENTRY, ON
Request command	
Command format	SYSCFG? <ws> DISPSOUND<,>ENTRY</ws>
Response	The response is returned in the form of the command to set that state
Example	SYSCFG? DISPSOUND, ENTRY
Response	If the state was OFF the response would be:
	SYSCFG DISPSOUND, ENTRY, OFF

User Text State

Set command	
Command format	SYSCFG <ws> DISPSOUND<,>TEXTS<,><state></state></ws>
	<state> ON or OFF</state>
Example	To set the entry error beep on the command would be:
	SYSCFG DISPSOUND, TEXTS, ON
Request command	
Command format	SYSCFG? <ws> DISPSOUND<,>TEXTS</ws>
Response	The response is returned in the form of the command to set that state
Example	SYSCFG? DISPSOUND, TEXTS
Response	If the state was OFF the response would be:
	SYSCFG DISPSOUND, TEXTS, OFF

User Text

Set command		
Command format	SYSCFG <ws> DISPSOUND<,>T</ws>	EXT<,> <text></text>
	<text> Up to ASCII 20</text>) characters.
Remarks	Defines the text string that will be command.	displayed using the TEXTS
Example	To set the text string to BLUETO	OTH the command would be:
	SYSCFG DISPSOUND, TEXT, BLU	JETOOTH
Request command		
Command format	SYSCFG? <ws> DISPSOUND<,></ws>	FEXT
Response	The response is returned in the for state	orm of the command to set that
Example	SYSCFG? DISPSOUND, TEXT	
Response	If the text was BLUETOOTH the	response would be:
	SYSCFG DISPSOUND, TEXT, BLU	JETOOTH

FOLTST (Follow Test Mode)

Set command

This command is used to set the follow test display mode. This can be set to OFF, when the current results page will be displayed whilst the tests are run, SUM when the summary results page for each test run will be displayed, or EXT when the extended results page for each test run will be displayed.

Command format	SYSCFG <ws>DISPSOUND<,>FOLTST<,><mode></mode></ws>	
	<mode></mode>	
	OFF	
	SUM	
	EXT	
Example	To set the follow test mode to Summary, the command would be:	
	SYSCFG DISPSOUND, FOLTST, SUM	
Request command		
This command is used returned.	to request the follow test display mode. The present value is	

Command format	SYSCFG? <ws>DISPSOUND<,>FOLTST</ws>
Response	OFF, SUM, EXT
Example	SYSCFG? DISPSOUND,FOLTST
Response	If the follow test mode is Extended:
	SYSCFG DISPSOUND, FOLTST, EXT

EUTADDR (EUT Address)

This command is used to set the EUT address when the EUT address source is set to manual. If the source is not set to manual the command will be ignored and an execution error given.

Set command

Command format	SYSCFG <ws< th=""><th colspan="2">SYSCFG<ws>EUTADDR<,><address></address></ws></th></ws<>	SYSCFG <ws>EUTADDR<,><address></address></ws>	
	<address></address>	6 byte hexadecimal string containing the address.	
Example	If the <i>Bluetooth</i> address is 0x000123ABCDEF the command would be:		
	SYSCFG EU	JTADDR, 000123ABCDEF	

Request command

This command is used to request the EUT address. The present value is returned, which could be the power up initialisation value of zeros. The only indication of a valid BT address is after a connection has been made.

Command format	SYSCFG? EUTADDR
Response	6 byte (12 character address) i.e. 000123ABCDEF
Example	SYSCFG? EUTADDR
Response	If the address is 000123ABCDEF
	SYSCFG? EUTADDR, 000123ABCDEF

EUTFEAT (EUT supported features)

This section allows the operator to read the supported features of the EUT.

Request command

Command format SYSCFG?<ws>EUTFEAT

Response The response is a 16-character string representation of a hexadecimal number containing the features information coded in the form specified in the *Bluetooth* HCI specification.

Example: 000018187805FFFF

EUTNAME (EUT User Friendly Name Request)

This command returns the user-friendly name of the EUT if it is available. When a test or script is run the standard connection procedure requests the user-friendly name. If the connection has been made using the auxiliary commands then the auxiliary user friendly name command can be used to read the user-friendly name.

Command format	SYSCFG? <ws>EUTNAME</ws>
Response	The User friendly name is returned as a text string of up to 248 characters.
Example	SYSCFG? EUTNAME
Response	The User friendly name is returned as a text string of up to 248 characters. If no user-friendly name is available, the string "not available" is returned.

EUTRS232 (EUT RS232 HCI Set Up)

This section allows the operator to set the baud rate of the HCI RS232 connection to the EUT.

Set command

Command format	SYSCFG <ws>EUTRS232<,><baud rate=""></baud></ws>	
	<baud rate=""></baud>	
	1200	
	2400	
	4800	
	9600	
	19200	
	38400	
	57600	
	115200	
	230400 (MT8852A/52B only)	
	460800 (MT8852A/52B only)	
	921600 (MT8852A/52B only)	
Remarks	The RS232 HCI link does not at present support the <i>Bluetooth</i> RS232 protocol negotiation and compression or handshaking.	
Example	To set the baud rate to 9600 the command would be:	
	SYSCFG EUTRS232,9600	
Request command		
Command format	SYSCFG? <ws>EUTRS232</ws>	
Response	The response is returned in the form of the command to set that state.	
Example	SYSCFG? EUTRS232	
Response	For baud rate set to 19200 the response would be:	
	SYSCFG EUTRS232,19200	

EUTSRCE (EU	T Address Source)
Command format	SYSCFG <ws>EUTSRCE<,><source/></ws>
	<source/>
	MANUAL
	RS232
	INQUIRY
	USB (MT8852A/52B only)
Remarks	This command is used to set the source of the EUT address. This setting is also used to tell the MT8850A/52A/52B whether it will be controlling the EUT via an HCI connection to run the tests using the HCI commands as described in the <i>Bluetooth</i> HCI specification (RS232 or USB).
	To run the tests the MT8850A/52A/52B needs to make a connection with the EUT using one of methods described below.
	MANUAL: The address of the EUT is entered via the front panel or GPIB.
	RS232 : The EUT address is acquired via the RS232 HCI link and the EUT is initialised for tests.
	INQUIRY : The EUT <i>Bluetooth</i> address is obtained by performing an inquiry. If the EUT address source is set to inquiry, a GPIB Run command will produce an execution error if the number of responses is set to greater than "1".
	USB (MT8852A/52B only): The EUT address is acquired via the USB HCI link and the EUT is initialised for tests.
Request command	
Command format	SYSCFG? <ws>EUTSRCE</ws>
Response	Response is in the form of the command to set that state.
Example	If the EUT address source was manual the response would be:
	SYSCFG? EUTSRCE
Response	SYSCFG EUTSRCE, MANUAL

HWINFO (Hardware information)

This command returns the RF PCB serial number and revision and the Control PCB serial number and revision.

Request	command
---------	---------

Command format	SYSCFG? <ws>HWINFO</ws>
Response	The information is returned in the order:
	<rf no.="" pcb="" ser="">,<rf pcb="" rev="">,</rf></rf>
	<control no.="" pcb="" ser="">,<control pcb="" rev=""></control></control>
Example	If the information is as follows, the response would be:
	RF PCB serial number: 01090021 RF PCB revision: 4 Control PCB serial number: 6K20 Control PCB revision: 3
Response	SYSCFG HWINFO,01090021,4,6K20,3

IDENT (Tester Identity)

This command allows the operator to read the identity, serial number and firmware version number of the Anritsu *Bluetooth* test set. The response is the same as the standard '*IDN?' command.

Request command

Command format SYSCFG?<ws>IDENT

Response A string is returned containing the manufacturer's name, the model number, the serial number (10 digits), and the software revision. Commas separate the items.

Example: ANRITSU, MT8850A, 6K0000031, 2.51

INQSET (Inquiry Set Up)

This command allows the inquiry action to be configured. The inquiry command is used to look for any *Bluetooth* device that is looking for an inquiry. The inquiry will continue once initiated until either the maximum number of responses have been given or the maximum period of time has expired. The inquiry can also be terminated by the inquiry stop auxiliary command. The sub parameters are:

RNUM	Number of responses before inquiry termination
TIMEOUT	Max period over which the inquiry will be done
NAME	Whether to access a common name during inquiry process

RNUM (Number of Response)

The inquiry can be configured to stop after a maximum number of responses. The command parameters used to set this value.

Set command

Command format	SYSCFG <ws>INQSET<,>RNUM<,><value></value></ws>	
	<value></value>	1 to 50
Example	To set the maximum number of responses to 12 the command would be:	
	SYSCFG INQSET	,RNUM,12

Request command

To request the number of responses an inquiry would return use the command:

Command format	SYSCFG? <ws><inqset<,>RNUM</inqset<,></ws>	
Example	SYSCFG? INQSET, RNUM	
Response	If the maximum number of responses set was 3 the response would be:	
	SYSCFG INQSET, RNUM, 3	

-

TIMEOUT (Maximum Inquiry Time)

The inquiry can be configured to stop after a maximum period of time. The command parameters used to set this value.

Set command		
Command format	SYSCFG <ws>INQSET<,>TIMEOUT<,><value></value></ws>	
	<value></value>	1 to 60 (timeout in seconds)
Example	To set the inquiry time to approximately 12 seconds, the command would be:	
	SYSCFG INQSET	,TIMEOUT,12
Request command		
To request the timeout se	etting of an inquiry	would return use the command:
Command format	SYSCFG? <ws>IN</ws>	QSET<,>TIMEOUT
Example	SYSCFG? INQSE	F,TIMEOUT

Response If the maximum timeout was set to 3 the response would be:

SYSCFG INQSET, TIMEOUT, 3

NAME (Common Name During Inquiry)

This parameter will control whether the user-friendly name will be requested for each of the inquired devices after and inquiry has ended.

Set command			
Command format	SYSCFG <ws></ws>	SYSCFG <ws>INQSET<,>NAME<,><state></state></ws>	
	<state></state>	ON or OFF	
Example	To request the user friendly name after the inquiry the command would be:		
	SYSCFG ING	QSET, NAME, ON	
Request command			

To request the inquiry name status use the command:

Command format SYSCFG? <ws>INQSET<,>N</ws>	AME
--	-----

Example	SYSCFG?	INQSET,NAME
---------	---------	-------------

Response If this state was set off the response would be:

SYSCFG INQSET, NAME, OFF

OPTSTATUS? (Option status)

Set command			
Command format	OPTSTATUS?		
Remarks	This command	This command returns the options enabled	
Request command			
Command format	OPTSTATUS, <num_opts>{,<options>,}</options></num_opts>		
	<num_opts></num_opts>	$0 \rightarrow 7$	
		Number of enabled options that follow.	
	<options></options>	Comma separated list of enabled options (see below).	
	15	AFH (Adaptive frequency hopping) support	
	16	Handsfree/Headset support	
	17	Allows IQ data output for EDR measurements	
	19	standard SCO (basic audio) support	
	25	EDR Measurements support	
Example	If option 15 is the only option enabled the response would be:		
Response	OPTSTATUS,1,15		

PAGSET (Page Setting)

This group of commands configures the following:

EUTPSRM (EUT Page Scan Repetition Mode)

PAGETO (Page Timeout Setting)

EUTPSRM (EUT Page Scan Repetition Mode)

This command is used to set the EUT page scan repetition mode.

Set command		
Command format	SYSCFG <ws>PAGSET,EUTPSRM<,><psrm></psrm></ws>	
	<psrm></psrm>	
	RO	
	Rl	
	R2	
Example	To set the page scan repetition mode to R1, the command would be:	
	SYSCFG PAGSET, EUTPSRM, R1	

Request command

This command is used to request the EUT page scan repetition mode. The present value is returned.

Command format	SYSCFG? <ws>PAGSET,EUTPSRM</ws>		
Response	R0, R1, R2		
Example	SYSCFG? PAGSET, EUTPSRM		
Response	If the page scan repetition mode is R1		
	SYSCFG PAGSET, EUTPSRM, R1		

PAGETO (Page Timeout Setting)

This command changes the page timeout used for making a connection. When requesting a test run or a connection, the MT8850A/52A/52B makes two connection attempts. The time set here is the total paging time for both attempts.

Set	command	
-----	---------	--

Command format	SYSCFG <ws>PAGSET,PAGETO<,><time></time></ws>	
	<time> 2 to 30 seconds (Integers only)</time>	
Request command		
Command format	SYSCFG? <ws>PAGSET,PAGETO</ws>	
Response	The response is in the form of the command to set that value	
Example	If the page timeout value is 10 seconds the response would be SYSCFG? PAGSET, PAGETO, 10	

PINCODE (PIN Code)

Set command			
This command sets the PIN Code			
Command format	SYSCFG <ws>AUTH,PINCODE,<variable></variable></ws>		
	<variable> numeric value of PIN</variable>		
Example	SYSCFG AUTH, PINCODE, 0000		
Request command			
This command reads the	PIN code.		
Command format	SYSCFG? <ws>AUTH,PINCODE</ws>		
Example	SYSCFG? AUTH, PINCODE		
Response	SYSCFG AUTH, PINCODE, 0000		

PINLEN (PIN Code Length)

Set command

This command sets the PIN Length

Command format	SYSCFG <ws>AUTH,PINLEN,<variable></variable></ws>	
	<variable> Integer 1 - 16</variable>	
Example	SYSCFG AUTH, PINLEN, 04	
Request command		
This command reads the	PIN length.	
Command format	SYSCFG? <ws>AUTH,PINLEN</ws>	
Example	SYSCFG? AUTH, PINLEN	
Response	SYSCFG AUTH, PINLEN, 04	

SCPTSET (Script Set Up)

This command group allows the set up of the action of the loop run command and the form in which frequencies will be displayed and reported over GPIB.

Loop test/script stop on fail Loop test/script continuously Loop test/script a defined number of times Frequency display mode

LPSTFAIL (Loop test/script stop on fail)

When running a test or script in loop mode this command allows the testing to stop on a test failing.

Set command			
Command format	SYSCFG <ws>SCPTSET<,>LPSTFAIL<,><state></state></ws>		
	<state></state>	ON or OFF	
Example	To set the stop or	fail to ON the command would be:	
	SYSCFG SCPTSE	T,LPSTFAIL,ON	
Request command			
Command format	SYSCFG? <ws>SC</ws>	PTSET,LPSTFAIL	
Response	The response is r state.	eturned in the form of the command to set that	
Example	SYSCFG? SCPTS	ET,LPSTFAIL	
Response	If the stop on fail	was OFF the response would be:	
	SYSCFG SCPTSE	T,LPSTFAIL,OFF	

Loop Test/Script Continuously

When running a test or script in loop mode this command allows the test or script to run continuously. When this is ON the loop count will not apply.

Set command		
Command format	SYSCFG <ws>SCP</ws>	ISET<,>LPCONT<,> <state></state>
	<state></state>	ON or OFF
Example	To set the loop co	ntinuously to ON the command would be:
	SYSCFG SCPTSE	F, LPCONT, ON
Request command		
Command format	SYSCFG? <ws>SC</ws>	PTSET, LPCONT
Response	The response is restate.	eturned in the form of the command to set that
Example	SYSCFG? SCPTS	ET, LPCONT
Response	If the loop continu	ous state was OFF the response would be:
	SYSCFG SCPTSE	F, LPCONT, OFF

Loop Count

When running a test or script in loop mode this command allows the test or script to run a number of times rather than continuously. When this loop continuous is ON the loop count does not apply.

Set command			
Command format	SYSCFG <ws>SCPTSET<,>LOOPCNT<,><value></value></ws>		
	<value></value>	2 to 100 (10 default)	
Example	To set the loop	count to 50 the command would be:	
	SYSCFG SCPT	set, loopcnt, 50	
Request command			
Command format	SYSCFG? <ws></ws>	SCPTSET, LOOPCNT	
Response	The response i state.	s returned in the form of the command to set that	
Example	SYSCFG? SCP	TSET, LOOPCNT	
Response	If the loop cour	nt value is 7 the response would be:	
	SYSCFG SCPT	SET,LOOPCNT,7	

Frequency Display Mode

This will change the way that the *Bluetooth* channels are reported and displayed between the frequency and the channel number. Channel 0 = 2402 MHz and channel 78 = 2480 MHz.

Set command			
Command format	SYSCFG <ws>SCPTSET<,>FRQDISP<,><state></state></ws>		
	<state></state>	FREQ CHAN	Display frequency Channel number
Example	To set the freque would be:	ency display	mode to frequency the command
	SYSCFG SCPTSI	ET,FRQDIS	P,FREQ
Request command			
Command format	SYSCFG? <ws>SC</ws>	CPTSET,FR	QDISP
Response	The response is state.	returned in t	he form of the command to set that
Example	SYSCFG? SCPTS	SET,FRQDI	SP
Response	If the frequency of would be:	display mode	e is channel number the response
	SYSCFG SCPTSI	ET, FRQDIS	P , CHAN

VERDATE (Tester Firmware Version and Date Stamp)

This command returns the version and date stamp information for all the modules within the Anritsu *Bluetooth* test set.

Command format	<pre>SYSCFG?<ws>VERDATE,<bbbootstamp><,><bbarmstamp><, ><bbfpgastamp><,><rffpgastamp><,><dspversion></dspversion></rffpgastamp></bbfpgastamp></bbarmstamp></bbbootstamp></ws></pre>		
	<bbbootstamp></bbbootstamp>	Base Band boot code date and time stamp	
	<bbarmstamp></bbarmstamp>	Base Band ARM code date and time stamp	
	<bbfpgastamp></bbfpgastamp>	Base Band FPGA date and time stamp	
	<rffpgastamp></rffpgastamp>	RF FPGA date and time stamp	
	<dspversion></dspversion>	DSP software version number	
Example	SYSCFG VERDAT 13:07:50,04/0 17:20:54,02.1	E,14/05/2001,11:18:06,22/08/2001 7/2001 09:17:22,04/09/2001 2	

VERNUM (Tester Firmware Version Numbers) (MT8852B only)

This command returns the version numbers for all the modules within the Anritsu *Bluetooth* test set.

Command format	SYSCFG? <ws>VE ><bbfpgastamp< th=""><th colspan="2"><pre>3CFG?<ws>VERNUM,N<bbbootstamp><,><bbarmstamp><, 3BFPGAstamp><,><rffpgastamp><,><dspversion></dspversion></rffpgastamp></bbarmstamp></bbbootstamp></ws></pre></th></bbfpgastamp<></ws>	<pre>3CFG?<ws>VERNUM,N<bbbootstamp><,><bbarmstamp><, 3BFPGAstamp><,><rffpgastamp><,><dspversion></dspversion></rffpgastamp></bbarmstamp></bbbootstamp></ws></pre>	
	<bbbootstamp></bbbootstamp>	N/A	
	<bbarmstamp></bbarmstamp>	Base Band ARM code version number	
	<bbfpgastamp< th=""><th>> Base Band FPGA version number</th></bbfpgastamp<>	> Base Band FPGA version number	
	<rffpgastamp< th=""><th>> RF FPGA version number</th></rffpgastamp<>	> RF FPGA version number	
	<dspversion></dspversion>	DSP software version number	
Example	SYSCFG VERDAT 13:07:50,04/0 17:20:54,02.1	TE,14/05/2001,11:18:06,22/08/2001 07/2001 09:17:22,04/09/2001 12	

Chapter 7. SCO Configuration (MT8852A/52B only)

This chapter provides details of the SCO configuration command and the associated parameters. SCO connections are used to carry audio data. A SCO connection can only be set up when an ACL connection has been made between the two units. The commands are listed in alphabetical order as detailed below.

SCOCFG (Set SCO Configuration)

Command format SCOCFG<ws><config selection>[<,><parameters>.....]

<config selection>

- AIRCODE SCO air code format
- BITPOSN SCO bit position
- INPUTCODE SCO input code format
- INPUTDATA SCO input data format
- LBMODE Loopback mode
- PKTTYPE SCO packet type
- SAMPSIZE SCO sample size
- TONEGEN SCO tone generator

AIRCODE (SCO Air Code Format)

Set command	
Command format	SCOCFG <ws>AIRCODE<,><format></format></ws>
	<format></format>
	CVSD
	ULAW
	ALAW
Remarks	This command is used to set the format to be used over air for the SCO connection. Both ends of the SCO link must use the same air code format.
	The value will also be used for the EUT if the MT8852A/52B is controlling an EUT via the front panel connection.
	The command is only allowed when there is an ACL connection but no SCO connection.
Request command	
Command format	SCOCFG? <ws>AIRCODE</ws>
Response	Response is in the form of the command to set that state.
Example	If the air code format is CVSD the response would be:
Response	SCOCFG AIRCODE, CVSD

BITPOSN (SCO Linear PCM Bit Position)

Set command	
Command format	SCOCFG <ws>BITPOSN<,><posn></posn></ws>
	<posn></posn>
	0-7
Remarks	This command is used to set the bit offset position for linear PCM input. The PCM bit position is the number of bit positions that the MSB of the sample is away from starting MSB (only for Linear PCM).
	The value is only used by the MT8852A/52B when it is controlling an EUT via the front panel connection.
	The command can only be used when there is an ACL connection (and if the EUT is controlled via the front panel, no SCO connection).
Request command	
Command format	SCOCFG? <ws>BITPOSN</ws>
Response	Response is in the form of the command to set that state.
Example	If the bit position is set to 0, the response would be:
Response	SCOCFG BITPOSN,0

INPUTCODE (SCO Input Coding Format)

Set command	
Command format	SCOCFG <ws>INPUTCODE<,><format></format></ws>
	<format></format>
	LINEAR
	ULAW
	ALAW
Remarks	This command is used to set the input coding format for the audio connection.
	The value is only used by the MT8852A/52B when it is controlling an EUT via the front panel connection.
	The command can only be used when there is an ACL connection (and if the EUT is controlled via the front panel, no SCO connection).
Request command	
Command format	SCOCFG? <ws>INPUTCODE</ws>
Response	Response is in the form of the command to set that state.
Example	If the input coding format is set to ULAW, the response would be:
Response	SCOCFG INPUTCODE, ULAW

INPUTDATA (SCO Input Data Format)

Set command	
Command format	SCOCFG <ws>INPUTDATA<,><format></format></ws>
	<format></format>
	1SCOMP
	2SCOMP
	SIGNMAG
Remarks	This command is used to set the input data format for the audio connection to either 1's compliment, 2's compliment or sign magnitude.
	The value is only used by the MT8852A when it is controlling an EUT via the front panel connection.
	The command can only be used when there is an ACL connection (and if the EUT is controlled via the front panel, no SCO connection).
Request command	
Command format	SCOCFG? <ws>INPUTDATA</ws>
Response	Response is in the form of the command to set that state.
Example	If the input data format is set to sign magnitude, the response would be:
Response	SCOCFG INPUTDATA, SIGNMAG

LBMODE (Loopback Mode)

Set command	
Command format	SCOCFG <ws>LBMODE<,><status></status></ws>
	<status></status>
	ON
	OFF
Remarks	This command is used to set the unit into remote loopback mode. In this mode all data received over air (including SCO data) will be looped back and sent back out over air.
	The command is only allowed when there is an ACL connection but no SCO connection.
Request command	
Command format	SCOCFG? <ws>LBMODE</ws>
Response	Response is in the form of the command to set that state.
Example	If the unit is in loopback mode, the response would be:
Response	SCOCFG LBMODE, ON

PKTTYPE (SCO Packet Type)

Set command		
Command format	SCOCFG <ws></ws>	PKTTYPE<,> <type></type>
	<type></type>	
	HV1	
	HV2	
	HV3	
Remarks	This comman packet type c	d is used to set the SCO packet type. Only one an be selected.
	Note: The packet type selected restricts the number of SCO connections available, as follows:	
	Pkt. Type	Max Connections available
	HV1	1
	HV2	2
	HV3	3
	The comman but no SCO c	d is only allowed when there is an ACL connection connection.
Request command		
Command format	SCOCFG? <ws< td=""><td>>PKTTYPE</td></ws<>	>PKTTYPE
Response	Response is i	in the form of the command to set that state.
Example	If the packet t	type is set to HV3, the response would be:
Response	SCOCFG PKT	TYPE, HV3

SAMPSIZE (SCO Input Sample Size)

Set command	
Command format	SCOCFG <ws>SAMPSIZE<,><size></size></ws>
	<size></size>
	8BIT
	16BIT
Remarks	This command is used to set the input sample size for the audio connection to either 8 bit or 16 bit.
	The value is only used by the MT8852A/52B when it is controlling an EUT via the front panel connection.
	The command can only be used when there is an ACL connection (and if the EUT is controlled via the front panel, no SCO connection).
Request command	
Command format	SCOCFG? <ws>SAMPSIZE</ws>
Response	Response is in the form of the command to set that state.
Example	If the input sample size is set to 16 bit, the response would be:
Response	SCOCFG SAMPSIZE,16BIT

TONEGEN (SCO Tone Generator)

Set command	
Command format	SCOCFG <ws>TONEGEN<,><state></state></ws>
	<state></state>
	ON
	OFF
Remarks	This command is used to turn the SCO tone generator on and off.
	It is only allowed when there is an ACL and a SCO connection.
Request command	
Command format	SCOCFG? <ws>TONEGEN</ws>
Response	Response is in the form of the command to set that state.
Example	If the tone generator is on, the response would be:
Response	SCOCFG TONEGEN, ON

Chapter 8. SCO Connections (MT8852A/52B only)

This chapter provides details of the SCO connect and disconnect commands. A SCO connection can only be created when an ACL connection already exists between the two units.

The following list is an example GPIB command sequence to create a SCO connection:

CONNECT

GETEUTFEAT

[SCOCFG ...]

SCOCONN 1

SCOCONN (SCO Connect)

SCOCONN <ws><channel></channel></ws>
<channel></channel>
1-3
This command is used to create a SCO connection on the specified channel. When the connection has been completed the SCC bit in the CHG register will be set.
The current state of the SCO connections can be obtained by using the STATUS command.

SCODISC (SCO Disconnect)

SCODISC <ws><channel></channel></ws>
<channel></channel>
1-3
This command is used to terminate a SCO connection on the specified channel. When the disconnection has been completed the SCC bit in the CHG register will be set.
The current state of the SCO connections can be obtained by using the STATUS command.

Chapter 9. AFH Measurement (MT8852A/52B only)

This chapter provides details of the Adaptive Frequency Hopping (AFH) configuration commands and associated parameters. AFH is a method used to improve the transmission quality by preventing hopping to channels that are being used by an interfering signal. The commands in this chapter are listed in alphabetical order as detailed below.

AFHCFG (Set AFH Configuration)

Command format AFHCFG<ws><config selection>[<,><parameters>...]

<config selection>

- ACM Read the MT8852A/52B Active Channel Map. (Query form only.)
- AFH AFH on/off.
- DISPLAY Display the channel utilisation page or the FER page.
- EUTRPT EUT reporting (on / off)
- EUTRRATE EUT reporting rate.
- FER Read the EUT Frame Error Rate
- MINCHAN Minimum number of active channels.
- MPLAM Set the MT8852A/52B Pseudo Local Assessment Map. (No query form.)
- SCALE Chart recorder display scale setting

ACM (Read Active Channel Map)

Request command	
Command format	AFHCFG? <ws>ACM</ws>
Response	Response is a hexadecimal representation of the active channel map
Example	If all channels are in use, the response would be:
Response	fffffffffffffffffffffffffffffffffff

AFH (AFH on / off)

Set command	
Command format	AFHCFG <ws>AFH<,><state> <state> ON or OFF</state></state></ws>
Remarks	This command enables AFH on the current connection.
Request command	
Command format	AFCFG? <ws>AFH</ws>
Response	The response is in the form of the command to set the current state.
Example	If AFH is enabled, the response would be:
Response	AFHCFG AFH,ON

DISPLAY (Display channel utilisation or FER page)

Set command	
Command format	AFHCFG <ws>DISPLAY<,><screen></screen></ws>
	<screen> CHVST or FERVST</screen>
Remarks	This command is used to select either the channel use versus time or the FER versus time display.
Request command	
Command format	AFHCFG? <ws>DISPLAY</ws>
Response	Response is in the form of the command to set that state.
Example	If the current display was FER versus time, the response would be::
Response	AFHCFG DISPLAY, FERVST

EUTRPT (EUT reporting on / off)

Set command	
Command format	AFHCFG <ws>EUTRPT<,><state> <state> ON or OFF</state></state></ws>
Remarks	This command is used to enable or disable EUT reporting.
Request command	
Command format	AFHCFG? <ws>EUTRPT</ws>
Response	Response is in the form of the command to set that state.
Example	If EUT reporting was on, the response would be:
Response	AFHCFG EUTRPT,ON

EUTRRATE (EUT Reporting Rate)

Set command	
Command format	AFHCFG <ws>EUTRRATE<,><rate> <rate> 1 to 30</rate></rate></ws>
Remarks	This command is used to set the rate, in seconds, at which the EUT generates local assessment reports.
Request command	
Command format	AFHCFG? <ws>EUTRRATE</ws>
Response	Response is in the form of the command to set that state.
Example	If the EUT reporting rate was currently 1s, the response would be:
Response	AFHCFG EUTRRATE,1

FER (Read Frame Error Rate)

Request command	
Command format	AFHCFG? <ws>FER</ws>
Response	Response is the current Frame Error Rate
Example	AFHCFG? FER
Response	If the FER is 3.16%, the response would be:AFHCFG FER,3.16

MINCHAN (Minimum number of active channels)

Set command	
Command format	AFHCFG <ws>MINCHAN<,><no. channels=""></no.></ws>
	<no. channels=""></no.>
	1 to 20
Remarks	This command is used to set the minimum number of channels that may remain as active in the Active Channel Map as a result of changes to the MPLAM or SLAM.
Request command	
Command format	AFHCFG? <ws>MINCHAN</ws>
Response	Response is in the form of the command to set that state.
Example	If the minimum active channels parameter is set to its default of 20, the response would be:
Response	AFHCFG MINCHAN,20

MPLAM (Set MT8852A/52B Pseudo Local Assessment Map)

Set command	
Command format	AFHCFG <ws>MPLAM<,><map></map></ws>
	<map></map>
	All disabled: 000000000000000000 All enabled: FFFFFFFFFFFFFFFFFFF Lower 32 enabled, rest disabled: FFFFFFFF000000000000
Remarks	This command is used to set or read the channel map. The channel map is represented by a string of 20 hexadecimal digits that define 10 bytes. The first channel, (channel 0) corresponds to bit 0 of the first byte and the last channel (channel 78) by bit 6 of the tenth byte. A "1" in each bit position means that the channel is available for use: "0" means that it is masked

SCALE

Set command	
Command format	AFHCFG <ws>SCALE<,><scale factor=""></scale></ws>
	<scale factor=""></scale>
	10
	20
	50
	100
Remarks	This command sets the scale value used for the "chart recorder" display when measuring channel utilisation or FER.
Request command	
Command format	AFCFG? <ws>SCALE</ws>
Response	The response is in the form of the command to set the current state.
Example	If scale is set to 20 then the response would be:
Response	AFHCFG SCALE,20
Chapter 10. Signal Generator Mode and CW Measurement

Signal Generator Mode

The MT8850A/52A/52B can be used to generate fixed data patterns at calibrated levels. The OPMD command can be used to put the instrument into signal generator mode although using the SIGGEN command to set the generator parameters will also put the instrument into signal generator mode.

The SIGGEN command can be used to set the following operation parameters.

Data pattern Bluetooth channel / frequency Modulation index of the transmission Transmitted power level RF output control

Command format

SIGGEN<ws><pattern><,><channel mode><,><channel><,><modindex><,><pwr><,><rfstate>

<pattern>

DATACW

DATA10101010

DATA11110000

DATAPRBS9

DATAPRBS15

<channel mode> CHAN | FREQ

<channel> -10 to 98 (2400 MHz to 2500 MHz)

<mod index> 0.25 to 0.40

<pwr> 0 to -90 dBm

<rfstate> ON or OFF

Example To set up the MT8850A/52A/52B to output a 101010101 data stream on channel 3 with 0.24 mod index at a power level of -20 dBm and to turn the RF output ON the use following command:

SIGGEN DATA10101010, CHAN, 3, 0.24, -20, ON

Note: Under certain circumstances it may be necessary to send the command string twice.

Remarks	SIGGEN is used to configure the Signal Generator function. To enter and exit the Signal Generator mode use OPMD and OPMD?
Command format	SIGGEN?
Response	The response is returned in the form of the command to set that state
Example	SIGGEN DATA10101010, CHAN, 3, 0.32, -20, ON

EDR Signal Generator Mode (MT8852B only)

The MT8852B can be used to generate fixed data patterns at calibrated levels for the Enhanced Data Rate (EDR) modulation schemes. Using the ESIGGEN command will automatically place the instrument into signal generator mode (no need to send the OPMD command).

Command format		ESIGGEN <ws><mod_scheme><,><pattern><,><ch_dispmore><,><ch_dispmore><,><ch_annel><,><pwr><,><rf_state></rf_state></pwr></ch_annel></ch_dispmore></ch_dispmore></pattern></mod_scheme></ws>		
		<mod_scheme></mod_scheme>	PI4 8DPSK	
		<pattern></pattern>	DATAPRBS9 DATAPRBS15	
		<ch_dispmode></ch_dispmode>	CHAN FREQ	
		<channel></channel>	-10 \rightarrow 98 (2392 MHz to 2500 MHz)	
		<pwr></pwr>	0.0 → -90.0 dBm	
		<rfstate></rfstate>	OFF ON	
Example1		To set up the instrument to output Pl4 modulation with a PRBS15 data stream on channel 7 at a power level of -40.0 dBm and to tu the RF output ON the use following command:		
		ESIGGEN PI4,D	ATAPRBS15, CHAN, 7, -40.0 , ON	
Note:	Under certain o twice.	circumstances it may be necessary to send the command string		
Remarks		ESIGGEN is used enter or exit the Sig	to configure the Signal Generator function. To gnal Generator mode use OPMD and OPMD?	
Comman	d format	ESIGGEN?		
Response		If the instrument configuration is as in example 2 above, the response will be:		
		ESIGGEN PI4,DA	TAPRBS15, CHAN, 7, -40.0, ON	

CW Measurement Mode

The MT8850A/52A/52B can be used to measure a fixed frequency modulation signal. Power, frequency, and modulation can be measured. The OPMD command can be used to put the MT8850A/52A/52B into CW measurement mode, although using the CWMEAS command to set the measurement parameters will also put the MT8850A/52A/52B into CW measurement mode.

he CWMEAS command is used to set the *Bluetooth* channel/frequency and measurement gate width parameters.

Command format	CWMEAS <ws><channel mode=""><,><channel><,><gate width></gate </channel></channel></ws>	
	<channel mode=""></channel>	CHAN
		FREQ
	<channel></channel>	-2 to 98 (2400 MHz to 2500 MHz)
	<gate width=""></gate>	0.1 ms to 3.0 ms
Example	To set up the MT8850A/52A/52B to measure on channel gate width of 3 ms use the following command.	
	CWMEAS, CHAN, 9	2,3e-3
Remarks	CWMEAS is used to configure CW Measurement mode. To enter and exit CW measurement mode use OPMD and OPMD?	
Command format	CWMEAS?	
Response	The response is returned in the form of the command to set that state	
Example	If set to measure frequency 2494 MHz with a gate width of 3 ms the response would be: CWMEAS FREQ, 2494e6, 3e-3	

The CWRESULT command is used to read the CW measurement result from the MT8850A.

Command format	CWRESULT <measurement type=""></measurement>		
<measurement type=""></measurement>	FREQOFF (frequency offset from the frequency set in CWMEAS)		
Response	<frequency 2="" decimal="" hz="" in="" places="" to="" value=""></frequency>		
<measurement type=""></measurement>	POWER		
Response	<power 2="" dbm="" decimal="" in="" places="" to="" value=""></power>		
<measurement type=""></measurement>	MOD		
Response	<positive 2="" decimal="" hz="" in="" modulation="" places="" to=""> <,>< Negative modulation in Hz to 2 decimal places></positive>		

EDR CW Measurement Mode (MT8852B only)

The MT8852B can be set up in CW measurement mode to allow calibration of an incoming fixed frequency signal. The instrument will measure power and DEVM for EDR modulation schemes. This mode is intended only for the measurement of continuous non-packetized signals and does not support triggering.

Using the ECWMEAS command will automatically place the instrument into EDR CW measurement mode (no need to send the OPMD command).

Command format	ECWMEAS <ws><m el><,><gate_w< th=""><th>od_scheme><,><ch_dispmode><,><chann ridth></chann </ch_dispmode></th></gate_w<></m </ws>	od_scheme><,> <ch_dispmode><,><chann ridth></chann </ch_dispmode>	
	<mod_scheme></mod_scheme>	PI4 8DPSK	
	<ch_dispmode></ch_dispmode>	CHAN FREQ	
	<channel></channel>	-2 → 98 (2400 MHz → 2500 MHz)	
	<gate width=""></gate>	0.1 → 3.0 ms	
Remarks	ECWMEAS is use The <gate width=""> which the test res</gate>	ed to configure EDR CW Measurement mode. parameter specifies the acquisition time over sults will be calculated.	
	Using the CWMEAS command will automatically place the instrument into EDR CW measurement mode (no need to send the OPMD command).To exit EDR CW measurement mode use OPMD.		
Example2	To set up the instrument to measure a 8DPSK signal on char 78 with a gate width of 3 ms use the following command. ECWMEAS 8DPSK, CHAN, 78, 3e-3		
Request Command			
Command format	ECWMEAS?		
Response	The response string returned for the query will be in the identical format as the configuration command string.		
Example	If set to measure PI4 at frequency 2494 MHz with a gate width 3 ms, the response would be:		
	ECWMEAS PI4,F	REQ,2494e6,3e-3	

CWRESULT (CW Measurements Results Output) (MT8852B only)

This command is used to fetch the measurement results from the MT8852B when configured in CW Measurement mode.

Command format	CWRESULT <ws><meas_type></meas_type></ws>		
	<meas_type></meas_type>	FREQOFF POWER MOD	
	Where:		
Remarks	FREQOFF CWMEAS	frequency offset from the frequency set in	
	POWER	signal power in dBm	
	MOD	<pos_mod>,<neg_mod></neg_mod></pos_mod>	
	<pos_mod></pos_mod>	positive modulation (Hz)	
	<neg_mod></neg_mod>	negative modulation (Hz)	
	Returns the requ to CW measurer sending this com Measurement m	lested measurement when the instrument is set nent mode. An execution error will be raised if imand when the instrument is not in CW ode	

Example

ECWRESULT (EDR CW Measurements Results Output) (MT8852B only)

This command is used to fetch the measurement results from the MT8852B when configured in EDR CW Measurement mode.

Command format ECWRESULT <ws><meas_type></meas_type></ws>		> <meas_type></meas_type>
	<meas_type> RMSDEVM</meas_type>	PKPWR RMSPWR PKDEVM
	Where:	
	PKPWR	Peak power (dBm)
	RMSPWR	RMS power (dBm)
	PKDEVM	Peak Error Vector Measurement
	RMSDEVM	RMS Error Vector Measurement
Remarks	Returns the requised to EDR CW means raised if sending EDR CW Measured EDR CW Measured to the set of the set o	lested measurement when the instrument is set surement mode. An execution error will be g this command when the instrument is not in rement mode
Example		

Chapter 11. Test Configuration

This chapter is split into the following four sections.

• Configuring tests in standard mode.

Output power	(TRM/CA/01/C)	
Power control	(TRM/CA/03/C)	
Initial carrier	(TRM/CA/08/C)	
Carrier frequency drift	(TRM/CA/09/C)	
Single slot sensitivity	(RCV/CA/01/C)	
Multi-slot sensitivity	(RCV/CA/02/C)	
Modulation index	(TRM/CA/07/C)	
Input power	(RCV/CA/06/C)	
Relative transmit power test	(TRM/CA/10/C)	
Carrier frequency stability and	(TRM/CA/11/C)	
modulation accuracy test	, , ,	
Differential phase encoding test	(TRM/CA/12/C)	MT8852B only
Sensitivity test	(RCV/CA/07/C)	,
BER floor sensitivity test	(RCV/CA/08/C)	
Maximum input power test	(RCV/CA/10/C)	
	·	

• Configuring tests in single payload mode.

Details of the SPCFG command used to configure single payload mode.

Test limit variables.

Details of the limit related variables for each of the eight tests.

Parameter variables.

Details of the non-limit type variables.

Configuring Tests in Standard Mode

Output Power Test Configuration (OPCFG)

The output power test performs power measurements on the EUT transmitted packets in one of three ways. The link is frequency hopping in each case.

With Hopping On mode set to "Defined" the MT8850A/52A/52B measures power only when the link hops to one of the frequencies defined on the LOW, MEDIUM and HIGH set up screen. Although the measurements are only made at the defined frequencies, it is still a hopping link. The number of packets measured at each frequency is set by the user in the "Number of packets" field. This is the test method described in the *Bluetooth* RF Test Specification.

With Hopping On mode set to "All" the MT8850A/52A/52B measures the power at every one of the 79 frequencies in the *Bluetooth* channel structure. The number of packets measured at each frequency is set by the user in the "Number of packets" field.

With Hopping On mode set to "Any" the MT8850A/52A/52B measures the power at the next frequency that the link hops to after the previous power measurement has been completed. The total number of packets measured is set by the user in the "Number of packets" field. This is typically the shortest of the three options as there is no requirement to measure a large number of packets at specified frequencies.

The MT8850A/52A/52B can perform the test using either loopback test controls or TX test controls. The default form for this test is to use loopback. The following test description is described using the default test control. The MT8850A/52A/52B transmits a pseudo random data payload (PRBS 9) of the longest supported type (DH5, DH3 or DH1) or the selected packet type, to the EUT. The EUT loops back the data at its maximum output power and the MT8850A/52A/52B measures the received power. This test is performed while hopping, and the test is repeated until the requested number of packets has been measured on each of the selected frequencies. The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all these frequencies to be changed from their default values.

OPCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>		
<script number<br=""></script>		

HFREQSEL	Use the high frequency settings in test	
LTXFREQ	Set the EUT low frequency TX value	
MTXFREQ	Set the EUT medium frequency TX value	
HTXFREQ	Set the EUT high frequency TX value	
NUMPKTS	Number of packets	
PKTTYPE	Packet type to use in performing test	
TSTCTRL	Test control to use in test	
AVGMXLIM	Average power high limit	
AVGMNLIM	Average power low limit	
PEAKLIM	Peak power limit	
DEFAULT	Set the test to its default settings (set only)	
To set the DEFAULT OPCG the command would be:		
OPCFG 3, DEFAULT,		

Request command

Example

Command format	OPCFG? <ws><scriptnumber><,><variable></variable></scriptnumber></ws>	
	<script numbe<br=""></script>	

	PEAKLIM	Peak power limit
Response	The response i state	is returned in the form of the command to set that
Example	OPCFG? 3, PEAKLIM	
Response	If the value of the OPCFG PEAKLIM was 15, the response would be:	
	OPCFG 3,PEA	KLIM,15

Power Control Test Configuration (PCCFG)

The power control test performs power measurement cycles on the EUT output, if the EUT supports power control, at each of the defined frequencies (LOW, MEDIUM and HIGH). This measurement is always performed with hopping off. The MT8850A/52A/52B can perform the test using either loopback test control or TX test control. The default form for this test is to use loopback. The following test is described using the default test control.

The MT8850A/52A/52B transmits a DH1 (or the operator selected packet type) packet with a pseudo random data payload (PRBS 9). This test is performed with hopping off. The LOW, MEDIUM and HIGH frequency sets relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all the frequencies to be changed.

A power measurement cycle sets the EUT output power to its maximum and then steps the power down to the minimum power and then up to the maximum again one step at a time. For each power step a number of data packets are sent to the EUT and looped back to the MT8850A/52A/52B. When the test is performed in TX test mode only the TX frequency settings are used since both RX and TX frequencies must be the same.

Command format	PCCFG <ws><sc [<params>]</params></sc </ws>	riptnumber><,> <variable><,></variable>
	<script number=""></script>	

	DEFAULT	Set the test to its default settings (set only)
Example	To set the DEFAULT PCCFG the command would be:	
	PCCFG 3,DEFAULT,	
Request command		
Command format	PCCFG? <ws><s< th=""><th>criptnumber><,><variable></variable></th></s<></ws>	criptnumber><,> <variable></variable>
	<script number=""></script>	

Initial Carrier Test Configuration (ICCFG)

The initial carrier test performs a frequency accuracy test on a DH1 pseudo random data packet. (PRBS 9) This test can be performed using either the loopback test control or the TX test control. The default is to use the loopback test control. This test can be made with either hopping on or off.

With hopping off, the MT8850A/52A/52B measures the initial carrier frequency error at the three frequencies defined on the LOW, MEDIUM and HIGH set up screen. The number of packets measured at each frequency is set by the user in the "Number of packets" field. This is the test method described in the *Bluetooth* RF Test Specification for an initial carrier frequency test with hopping off.

With hopping on, the MT8850A/52A/52B can make the measurement in one of two ways.

If Hopping On mode is set to "All", the MT8850A/52A/52B will measure the initial carrier frequency at every one of the 79 frequencies in the *Bluetooth* channel structure. The number of packets measured at each frequency is set by the user in the "Number of packets" field. This is the test method described in the *Bluetooth* RF Test Specification for an initial carrier frequency test with hopping on.

If Hopping On mode is set to "Any" the MT8850A/52A/52B measures the power at the next frequency that the link hops to after the previous initial carrier frequency measurement has been completed. The total number of packets measured is set by the user in the "Number of packets" field. This is typically the shortest option as there is no requirement to measure a large number of packets at every frequency.

When the measurement is made using TX mode the MT8850A/52A/52B sets up the EUT so that when the EUT is polled it transmits a DH1 packet with a pseudo random payload for each of the frequencies selected (LOW, MEDIUM and HIGH). This test can be performed with hopping off and on. The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all the frequencies to be changed. When the test is performed in TX test mode EUT transmitter and receiver frequencies must be the same.

Command format	ICCFG <ws><sc [<params>]</params></sc </ws>	riptnumber><,> <variable><,></variable>
	<script number=""></script>	

	MRXFREQ	Set the EUT medium frequency RX value
	HRXFREQ	Set the EUT high frequency RX value
	NUMPKTS	Set the number of packets used for each
	TSTCTRL	Test control to use in test
	OFFSETLIM	Set the offset limit
	MXPOSLIM	Set the positive offset limit
	MXNEGLIM	Set the negative offset limit
	DEFAULT	Set the test to its default settings (set only)
Example	To set the DEF	AULT ICCFG the command would be:
	ICCFG 3,DEF	AULT,
Request command		
Command format	ICCFG? <ws><</ws>	scriptnumber><,> <variable></variable>
	<script number<br=""></script>	

Carrier Drift Test Configuration (CDCFG)

The carrier drift test performs a frequency drift measurement over the length of the packet received. The test can be carried out for each of the supported packet types with either hopping on or hopping off. This test can be performed using either the loopback test control or the TX test control. The default is to use the loopback test control.

In loopback mode with hopping off, the MT8850A/52A/52B sends DH1, DH3 and DH5 packets with a 10101010.payload at each of the frequencies selected (LOW, MEDIUM and HIGH). The EUT returns the DH1, DH3 or DH5 packet for measurement. The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The number of packets of each length that are measured is set in the "Number of packets" field. The MT8850A/52A/52B allows all the frequencies to be changed. This is the test method described in the *Bluetooth* RF Test Specification for a carrier frequency drift test with hopping off.

In loopback mode with hopping on, and hopping on mode set to "All" the MT8850A/52A/52B sends DH1, DH3 and DH5 packets with a 10101010.payload. The EUT returns the DH1, DH3 or DH5 packet for measurement. The MT8850A/52A/52B will measure the carrier frequency drift for each packet length at every one of the 79 frequencies in the *Bluetooth* channel structure. The number of packets of each length that are measured is set in the "Number of packets" field. This is the test method described in the *Bluetooth* RF Test Specification for a carrier frequency drift test with hopping on.

In loopback mode with hopping on, and hopping on mode set to "Any" the MT8850A/52A/52B sends DH1, DH3 and DH5 packets with a 10101010 payload. The EUT returns the DH1, DH3 or DH5 packet for measurement. The MT8850A/52A/52B will measure the carrier frequency drift at the next frequency that the link hops to after the previous carrier frequency drift measurement has been completed. The number of packets of each length that are measured is set in the "Number of packets" field.

In TX mode with hopping on or off the measurement process is the same as for loopback except that the MT8850A/52A/52B does not send full DHX packets but just POLL packets. The EUT has been configured by the MT8850A/52A/52B to respond to a POLL with the appropriate DHX packet. The EUT must support TX mode part of the Test Mode specification for this to work. The test time is much shorter when run using TX mode compared with loopback as the MT8850A/52A/52B does not have to send full packet lengths. When the test is performed in TX test mode EUT transmitter and receiver frequencies must be the same. For this test the TX and RX frequencies are the same. TX mode complies with the *Bluetooth* RF Test Specification for a carrier frequency drift test.

Command format	CDCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>	
	<script number=""></script>	

	LTXFREQ	Set the low frequency TX and RX value
	MTXFREQ	Set the medium frequency TX and RX value
	HTXFREQ	Set the high frequency TX and RX value
	LRXFREQ	Set the EUT low frequency RX value
	MRXFREQ	Set the EUT medium frequency RX value
	HRXFREQ	Set the EUT high frequency RX value
	NUMPKTS	Set the number of packets used
	PKTSIZE	Set the packet sizes to be used
	TSTCTRL	Test control to use in test
	DFT1LIM	Set the 1 slot packet drift limit
	DFT3LIM	Set the 3 slot packet drift limit
	DFT5LIM	Set the 5 slot packet drift limit
	DFTNPLIM	Set the drift limit in NULL packets.
	DFTRATE	Set the drift rate limit
	DEFAULT	Set the test to its default settings (set only)
Example	To set the DEFA	ULT CDCFG the command would be:
	CDCFG 3,DEFA	ULT
Request command		
Command format	CDCFG? <ws><s< th=""><th>criptnumber><,><variable></variable></th></s<></ws>	criptnumber><,> <variable></variable>
	<script number=""></script>	

	TSTCTRL	Read the test control used in testing
	DFT1LIM	Read the 1 slot packet drift limit
	DFT3LIM	Read the 3 slot packet drift limit
	DFT5LIM	Read the 5 slot packet drift limit
	DFTRATE	Read the drift rate limit
Response	The response is state	returned in the form of the command to set that
Example	CDCFG? 3,HOPPING	
Response	If the value of the CDCFG HOPPING was ON, the response would be:	
	CDCFG 3,HOPP	ING, ON

Single Slot Sensitivity Test Configuration (SSCFG)

For a single slot sensitivity measurement the MT8850A/52A/52B transmits DH1 packets with a pseudo random payload (PRBS 9) to the EUT at a minimum power level. If the dirty transmitter parameters are applied, then every 20 mS the MT8850A/52A/52B changes the transmitter parameters as specified in the dirty transmitter table for this test. The EUT loops back the received data and a bit error rate (BER) calculation and frame error rate (FER) calculation is performed by the MT8850A/52A/52B test set. The test is repeated for each of the frequencies selected (LOW, MEDIUM and HIGH). This test is performed with hopping off. The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all the frequencies to be changed. This is the test method described in the *Bluetooth* RF Test Specification for a single slot sensitivity test with hopping off.

The MT8850A/52A/52B can also carry out this test with hopping on.

Command format	SSCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>	
	<script number=""></script>	

Example	To set the SSCFG to on the command would be:	
	SSCFG 3, LFREQSEL, ON	
Request command		
Command format	SSCFG? <ws><s< th=""><th>criptnumber><,><variable></variable></th></s<></ws>	criptnumber><,> <variable></variable>
	<script number=""></script>	

Multi Slot Sensitivity Test Configuration (MSCFG)

For a multi slot sensitivity measurement the MT8850A/52A/52B transmits the longest supported packet type as reported by the EUT during link set up with a pseudo random payload (PRBS 9) to the EUT at a minimum power level. If the dirty parameters are enabled then every 20 mS the MT8850A/52A/52B changes the transmitter parameters as specified in the dirty transmitter table for this test. The EUT loops back the received data and a bit error rate (BER) calculation and frame error rate (FER) calculation is performed by the MT8850A/52A/52B test set. This test is performed with hopping off. Measurements are made at each of the frequencies selected (LOW, MEDIUM and HIGH). The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all the frequencies to be changed. This is the test method described in the *Bluetooth* RF Test Specification for a multi slot sensitivity test with hopping off.

The MT8850A/52A/52B can also carry out this test with hopping on.

Command format	MSCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>	
	<script number=""></script>	

	DEFAULT	Set the test to its default settings (set only)		
Example	To set the DEF	To set the DEFAULT MSCFG the command would be:		
	MSCFG 3,DEF.	MSCFG 3, DEFAULT		
Request command				
Command format	MSCFG? <ws><</ws>	<pre>scriptnumber><,><variable></variable></pre>		
	<script number<br=""></script>			

Modulation Index Test Configuration (MICFG)

This test measures the modulation characteristics on the EUT output for each of the frequency ranges selected (LOW, MEDIUM and HIGH). The MT8850A/52A/52B can perform the test using either loopback test controls or TX test controls. The default form for this test is to use loopback. The following test is described using the default test control.

The MT8850A/52A/52B transmits a number of packets containing the four ones four zeros payload (11110000) which are looped back by the EUT. Then packets with the alternate ones and zeros (101010101) payload are transmitted and are looped back by the EUT. These packets are the longest supported packet type as reported by the EUT during link set up (DH1, DH3 or DH5) or the selected packet type.

This test is performed with hopping off, and the test is repeated until the number of packets has been measured on each of the selected frequencies as set in the "Number of packets" field. The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all the frequencies to be changed. When the test is performed in TX test mode EUT transmitter and receiver frequencies must be the same.

Command format	MICFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>	
	<script number=""></script>	

Example	To set the DEFAULT MICFG the command would be:		
	MICFG 3,DEFA	ULT	
Request command			
Command format	MICFG? <ws><scriptnumber><,><variable></variable></scriptnumber></ws>		
	<script number=""></script>		

Input Power Sensitivity Test Configuration (MPCFG)

For the EUT maximum input power test the MT8850A/52A/52B transmits a pseudo random payload (PRBS 9) DH1 data packet to the EUT so that the EUT receives the signal at a power level of -20 dBm. The EUT loops back the received data and a bit error rate (BER) calculation and frame error rate (FER) calculation is performed by the MT8850A/52A/52B test set. The test is repeated for each of the frequency ranges selected (LOW, MEDIUM and HIGH). This test is performed with hopping off. The LOW, MEDIUM and HIGH frequencies relate to the default frequencies specified in the *Bluetooth* RF test specification. The MT8850A/52A/52B allows all the frequencies to be changed.

Command format	MPCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>	
	<script number=""></script>	

Response

Example

HFREQSEL	Read the high frequency settings in test
LTXFREQ	Read the low frequency TX value
LRXFREQ	Read the low frequency RX value
MTXFREQ	Read the medium frequency TX value
MRXFREQ	Read the medium frequency RX value
HTXFREQ	Read the high frequency TX value
HRXFREQ	Read the high frequency RX value
NUMPKTS	Read the number of packets used
TXPWR	Read the requested DUT RX power level
BERLIM	Read the BER limit
FERLIM	Read the FER limit
PKTCOUNT	Read the method used to count packets
The response is state	returned in the form of the command to set that
MPCFG 3.NUMP	KTS

Response If the value of the MPCFG NUMPKTS was 10, the response would be:

MPCFG 3,NUMPKTS,10

Relative Transmit Power Test Configuration (ERP) (MT8852B only)

The EDR relative transmit power measurement ensures that the difference in average transmit power during the frequency modulated [GFSK] and phase modulated [PSK] parts of a packet is within the range specified below.

Pass criteria = (PGFSK - 4dB) < PDPSK < (PGFSK + 1dB)

The test can be performed using either Loopback or TX mode test controls with hopping on or off. If the EUT supports both π /4DQPSK and 8DPSK modulation, then the test must be performed on both modulation formats using the longest support packet type.

The test must be performed with the EUT transmitting at its maximum power, and if the EUT supports power control, also at its minimum transmitter power level. The MT8852B will set the EUT to the Max and Min transmit power automatically if the EUT reports that it supports power control and both Max and Min have been selected in the "EUT power level" entry field.

Command format	ERPCFG <ws>< [<params></params></ws>	scriptnumber><,> <variable><,>]</variable>
	<script number<br=""></script>	

Carrier Frequency Stability and Modulation Test Configuration (ECM) (MT8852B only)

This test verifies the transmitter carrier frequency stability and modulation accuracy.

This test comprises of both a frequency measurement and a Differential Error Vector Magnitude (DEVM) measurement

The frequency measurements defined are;

- Initial frequency error of the packet header which is GFSK modulated ω_i (Pass criteria $\pm 75 \text{kHz})$
- Block frequency error during 50µs time blocks in the PSK modulated payload ω_0 (pass criteria ±10kHz) This frequency error is measured relative to the Initial frequency error. The MT8852B continues to measure packets until the user selected number of 50µs blocks has been tested, the default being 200 blocks.
- It is also a requirement of the test that the sum of the above 2 tests $(\omega_i+\omega_0)$ does not exceed $\pm 75 \text{kHz}$

The modulation measurements defined are;

- RMS DEVM. This is the average DEVM for all the symbols in each 50µs block measured. The result is calculated for each block, and each block must pass the following criteria, ≤ 0.20 for all π/4DQPSK blocks and ≤ 0.13 for all 8DPSK blocks.
- Peak DEVM. This is the DEVM value of the single symbol in all the blocks measured that has the highest value. The pass criterion is ≤ 0.35 for all π/4DQPSK symbols and ≤ 0.25 for all 8DPSK symbols.
- 99% DEVM. This is the DEVM value below which 99% of all the symbols measured in all the blocks are present. The pass criterion is 99% of all symbols are \leq 0.30 for all π /4DQPSK symbols, and 99% of all symbols are \leq 0.20 for all 8DPSK symbols.

The default criteria for this measurement is that the longest supported π /4DQPSK and the longest support 8DPSK packets must both be tested in loopback mode with hopping off.

Command format	ECMCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>	
	<script number=""></script>	

LTXFREQ	Low TX frequency
MTXFREQ	Medium TX frequency
HTXFREQ	High TX frequency
LFREQSEL	Use the low frequency settings in test
MFREQSEL	Use the medium frequency settings in test
HFREQSEL	Use the high frequency settings in test
INITFRQLH	Initial frequency error upper limit value
INITFRQLL	Initial frequency error lower limit value
FREQERLH	Frequency error upper limit value
FREQERLL	Frequency error lower limit value
BLKFRQLH	Block frequency error upper limit value
BLKFRQLL	Block frequency error lower limit value
LRMSDEVM	2Mbs RMS DEVM limit value
HRMSDEVM	3Mbs RMS DEVM limit value
LPKDEVM	2Mbs peak DEVM limit value
HPKDEVM	3Mbs peak DEVM limit value
LPCTDEVM	2Mbs 99% packets DEVM limit value
HPCTDEVM	3Mbs 99% packets DEVM limit value

Differential Phase Encoding Test Configuration (EDP) (MT8852B only)

In this measurement the EUT transmits a packet with a defined PRBS9 payload. The payload of the received packet is demodulated and compared with the defined ideal packet to give a resultant symbol error rate. The Bluetooth 2.0 specification stipulates that zero errors are detected in 99% of 100 packets transmitted.

The Bluetooth test specification only requires this test to be performed on 2-DH1 and 3-DH1 packets on channel 0.

Command format	EDPCFG <ws>< [<params></params></ws>	EDPCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>		
	<script numbe<br=""></script>			

EDR Sensitivity Test Configuration (EBS) (MT8852B only)

The sensitivity test case is to test the EUT receiver sensitivity performance in terms of bit error rate using a non-ideal (dirty) test signal. The test should be performed on the longest supported π /4DQPSK and 8DPSK packets with frequency hopping off.

The signal source level is set so that the EUT receiver has an input level of -70dBm with defined signal impairments. At each of the test frequencies, the tester transmits packets to the EUT. The EUT loops back the packets to the tester until the tester has receiver 1,600,000 bits. If the BER measured is $\le 7 \times 10^{-5}$ then the test has passed and the test stops. If the BER is $\ge 7 \times 10^{-5}$ then the test continues until the tester has received 16,000,000 bits. If the BER measured is $\le 1 \times 10^{-4}$ then the EUT has passed. This pass criteria applies to each test frequency.

Command format	EBSCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>		
	<script number=""></script>		

EDR BER Floor Sensitivity Test Configuration (EFS) (MT8852B only)

The BER floor performance test case is to test whether the EUT receiver sensitivity has low residual BER performance when tested at a level 10dB above its minimum sensitivity. The test should be performed on the longest supported π /4DQPSK and 8DPSK packets with frequency hopping off.

The signal source level is set so that the EUT receiver has an input level of -60dBm with no signal impairments. At each of the test frequencies, the tester transmits packets to the EUT. The EUT loops back the packets to the tester until the tester has receiver 8,000,000 bits. If the BER measured is $\leq 7 \times 10^{-6}$ then the test has passed and the test stops. If the BER is $\geq 7 \times 10^{-5}$ then the test continues until the tester has received 160,000,000 bits. If the BER measured is $\leq 1 \times 10^{-5}$ then the EUT has passed. This pass criteria applies to each test frequency.

Set command Command format EFSCFG<ws><scriptnumber><,><variable><,> [<params>.....] <script number> <variable> DHXPKT DHx test packet type to use PKTCOUNT Set the method used to count packets HOPPING Hopping stages THBITCNT Threshold bit count TTBITCNT Total test bit count TXPWR Set the EUT RX power I RXFRFQ Low RX frequency MRXFRFQ Medium RX frequency HRXFREQ High RX frequency LTXFREQ Low TX frequency MTXFRFQ Medium TX frequency HTXFREQ High TX frequency LFREQSEL Use the low frequency settings in test **MFREQSEL** Use the medium frequency settings in test HFREQSEL Use the high frequency settings in test THERR Threshold error limit TTERR Total test error limit

EDR Maximum Input Power Test Configuration (EMP) (MT8852B only)

The EDR Maximum input level test case is to test whether the EUT receiver sensitivity has low BER performance when tested at a high signal level close to its maximum specified input. The test should be performed on the longest supported π /4DQPSK and 8DPSK packets with frequency hopping off.

The signal source level is set so that the EUT receiver has an input level of -20dBm with no signal impairments. At each of the test frequencies, the tester transmits packets to the EUT. The EUT loops back the packets to the tester until the tester has receiver 1,600,000 bits. The pass criterion is that the EUT BER shall be $\leq 1 \times 10^{-3}$. This pass criterion applies to each test frequency.

Set command

(

Command format	EMPCFG <ws><scriptnumber><,><variable><,> [<params>]</params></variable></scriptnumber></ws>		
	<script number=""></script>		

Configuring Tests in Single Payload Mode (SPCFG)

This command is used to configure parameters when test scripts are carried out in Single Payload mode. When running a script in this mode the instrument will use the configuration parameters listed below. Note that the following tests are NOT supported in Single Payload mode.

- Maximum Input Power Sensitivity
- Power Control
- Any of the six EDR measurements (MT8852B only)

Set command

Command format SPCFG<ws><script_num><,><variable><,>[<params>.....]

<script_num></script_num>	1 → 10
TSTCTRL	Test control to use in test
PAYLOAD	Set the test control payload type
PKTTYPE	Packet type to use in performing test
HOPSTATE	Set the hopping modes used
TXFREQ	Set the TX frequency value
RXFREQ	Set the RX frequency value
DIRTYTX	Use dirty parameter table ON/OFF
DEFAULT	Restore the default settings (set only)

Request command

Command format SPCFG?<ws><script number><,><variable>

<script_num></script_num>	1 → 10
TSTCTRL	Test control to use in test
PAYLOAD	Set the test control payload type
PKTTYPE	Packet type to use in performing test
HOPSTATE	Set the hopping modes used
TXFREQ	Set the TX frequency value
RXFREQ	Set the RX frequency value
DIRTYTX	Use dirty parameter table ON/OFF

Test Limit Variables

The limit variables for each of the tests are detailed in this section.

Output Power limit commands

(AVGMXLIM, AVGMNLIM)

These parameters are used to set or read the limits used to determine if the average power reading in the output power test passes or fails.

Command format	OPCFG <ws><script number=""></script></ws>	
----------------	--	--

Power Control Limit Commands

(MXSTEPLIM, MNSTEPLIM)

These parameters are used in the power control test configuration to set or read the power step limits. If the step sizes are not within these limits the test is reported as failed.

Command format	<pre>PCCFG<ws><script number=""></script></ws></pre>	
----------------	--	--
Initial Carrier Limit Commands

(MXPOSLIM, MXNEGLIM)

These parameters are used to set or read the maximum positive or negative offset limits for the initial carrier test.

Command format	ICCFG <ws><script number=""></script></ws>	
----------------	--	--

Carrier Drift Limit Commands

(DFT1LIM, DFT3LIM, DFT5LIM, DFTNPLIM, DFTRATE)

This parameter is used to set or read the drift limit values in the carrier drift test. The drift rate if in the units of Hz/50 μ S.

Command format	CDCFG <ws><script number=""></script></ws>		
----------------	--	--	--

Sensitivity Related Limit Commands

(BERLIM, FERLIM)

These parameters are used to set or read the BER/FER limit value used in the sensitivity tests.

Command format	SSCFG <ws><script number><,>,<parameter><,><number></number></parameter></script </ws>	
	<script number=""></script>	

Modulation Index Limit Commands

(F1AVGMIN, F1AVGMAX, F2MAXLIM, F1F2MAX)

These parameters are used to set or read the limit values used in the modulation characteristic test to determine if the test has passed or failed.

Command format	MICFG <ws><script number=""></script></ws>	
----------------	--	--

Relative Transmit Power Limit Commands (MT8852B only)

(PDIFFLL, PDIFFLH)

PDIFFLL – PDPSK to PGFSK difference window lower limit (MT8852B only)

This parameter is used to setup the lower limit for the average power difference window for the EDR Relative Power test pass-fail criteria. The pass criteria is defined as:

Pass criteria = (PGFSK - X) < PDPSK < (PGFSK + Y)

Where X and Y have the same meaning as defined in the operation manual. The variables X, Y define the average power difference window in dB, where X is the lower limit and Y is the upper limit. The command PDIFFLL sets the X-value lower limit power. Note that only |X|, i.e. the magnitude of X can be set.

Command format	ERPCFG <ws><script number=""></script></ws>	
----------------	---	--

PDIFFLH – PDPSK to PGFSK difference window upper limit (MT8852B only)

This parameter is used to setup the upper limit for the average power difference window for the EDR Relative Power test pass-fail criteria. The pass criteria is defined as:

Pass criteria = (PGFSK - X) < PDPSK < (PGFSK + Y)

Where X and Y have the same meaning as defined in the operation manual. The variables X, Y define the average power difference window in dB, where X is the lower limit and Y is the upper limit. The command PDIFFLH sets the Y-value upper limit power. Note that only |Y|, (i.e. the magnitude of Y) can be set.

Command format	ERPCFG <ws><script number=""></script></ws>	
----------------	---	--

Frequency and Modulation Accuracy Limit Commands (MT8852B only)

(INITFRQLH, INITFRQLL, FREQERLH, FREQERLL, BLKFRQLH, BLKFRQLL, LRMSDEVM, HRMSDEVM, LPKDEVM, HPKDEVM, LPCTDEVM, HPCTDEVM)

INITFRQLH - Initial frequency error upper limit value (MT8852B only)

This parameter is used to setup the initial frequency error upper limit value for the EDR carrier frequency and modulation accuracy test.

Command format	ECMCFG <ws><script number=""></script></ws>	
----------------	---	--

INITFRQLL - Initial frequency error lower limit value (MT8852B only)

This parameter is used to setup the initial frequency error lower limit value for the EDR carrier frequency and modulation accuracy test.

Set command		
Command format	ECMCFG <ws><script number=""></script></ws>	

FREQERLH - Frequency error upper limit value (MT8852B only)

This parameter is used to setup the frequency error upper limit value for the EDR carrier frequency and modulation accuracy test.

Set command		
Command format	ECMCFG <ws><script number=""></script></ws>	

FREQERLL - Frequency error lower limit value (MT8852B only)

This parameter is used to setup the frequency error lower limit value for the EDR carrier frequency and modulation accuracy test.

Set command			
Set command			
Command format	ECMCFG <ws><script number=""></script></ws>		

BLKFRQLH - Block frequency error upper limit value (MT8852B only)

This parameter is used to setup the block frequency error upper limit value for the EDR carrier frequency and modulation accuracy test.

Set command			
Command format	ECMCFG <ws><script number=""></script></ws>		

BLKFRQLL - Block frequency error lower limit value (MT8852B only)

This parameter is used to setup the block frequency error lower limit value for the EDR carrier frequency and modulation accuracy test.

Set command		
Command format	ECMCFG <ws><script number=""></script></ws>	

LRMSDEVM - 2Mbs RMS DEVM limit value (MT8852B only)

This parameter is used to setup the 2Mbs RMS DEVM limit value for the EDR carrier frequency and modulation accuracy test.

Set command		
Command format	ECMCFG <ws><script number=""></script></ws>	

HRMSDEVM - 3Mbs RMS DEVM limit value (MT8852B only)

This parameter is used to setup the 3Mbs RMS DEVM limit value for the EDR carrier frequency and modulation accuracy test.

Set command			
Command format	ECMCFG <ws><script number=""></script></ws>		

LPKDEVM - 2Mbs Peak DEVM limit value (MT8852B only)

This parameter is used to setup the 2Mbs Peak DEVM limit value for the EDR carrier frequency and modulation accuracy test.

Set command		
Command format	ECMCFG <ws><script number=""></script></ws>	

HPKDEVM - 3Mbs Peak DEVM limit value (MT8852B only)

This parameter is used to setup the 3Mbs Peak DEVM limit value for the EDR carrier frequency and modulation accuracy test.

Set command				
Command format	ECMCFG <ws><so< td=""><td colspan="3">ECMCFG<ws><script number=""></script></ws></td></so<></ws>	ECMCFG <ws><script number=""></script></ws>		

LPCTDEVM - 2Mbs 99% packets DEVM limit value (MT8852B only)

This parameter is used to setup the 2Mbs 99% packets DEVM limit value for the EDR carrier frequency and modulation accuracy test.

Set command			
Command format	ECMCFG <ws><script number=""></script></ws>		

HPCTDEVM - 3Mbs 99% packets DEVM limit value (MT8852B only)

This parameter is used to setup the 3Mbs 99% packets DEVM limit value for the EDR carrier frequency and modulation accuracy test.

Set command			
Command format	ECMCFG <ws><script number=""></script></ws>		

Differential Phase Encoding Limit Commands

PCTPKT - Percentage of packets with no errors limit value (MT8852B only)

This parameter is used to setup the percentage limit for the number of packets with no error for the EDR Differential Phase Encoding test (EDP). Note that this applies to both the 2 Mbs & 3 Mbs data rates.

Set command			
Command format	EDPCFG <ws><script number=""></script></ws>		

EDR Sensitivity Limit Commands (MT8852B only)

(THERR, TTERR)

THERR - Threshold error limit (MT8852B only)

This parameter is used to setup the Threshold error limit for the EDR sensitivity test (EBSCFG) and the EBSCFG floor sensitivity test (EFSCFG).

EBSCFG <ws><script number=""></script></ws>	
---	--

TTERR - Total test error limit (MT8852B only)

This parameter is used to setup the Total Test error limit for the EDR sensitivity test (EBSCFG) and the EDR BER floor sensitivity test (EFSCFG).

Set command			
Command format	EBSCFG <ws><script number=""></script></ws>		

Set command

Sensitivity Related Limit Commands (MT8852B only)

These parameters are used to set or read the BER/FER limit value used in the sensitivity tests and EDR Maximum input power test. Note that different units and ranges apply to the EDR test.

oet ooninnana			
Command format	EMPCFG <ws><script number=""></script></ws>		

Parameter Variables

This section provides details of the non-limit type variables that may be used for all or any of the tests. For ease of referencing, the variables are listed in alphabetical order.

Actual Frequencies Used (LTXFREQ, LRXFREQ, LFREQ, MTXFREQ, MRXFREQ, MFREQ, HTXFREQ, HRXFREQ, HFREQ, TXFREQ, RXFREQ)

Use the appropriate parameter to set or query the Low, Medium or High frequencies for the selected test. Confirm in the list for the specific test configuration that the parameter is supported. The following exceptions apply depending on the specific Test or Test Control Mode:

- a) When in TX Test Control Mode ONLY, use parameters LFREQ, MFREQ or HFREQ to set both TX and RX frequencies (parameters LTXFREQ, MTXFREQ, HTXFREQ can also be used as alternatives).
- b) The TXFREQ, RXFREQ parameters must be used when the test mode is Single Payload Mode.

Note: The TX frequencies are the EUT TX frequencies and the RX frequencies are the EUT RX frequencies.

Set command			
Command format	PCCFG <ws><script number=""></script></ws>		

Request command			
Command format	PCCFG? <ws><script number=""></script></ws>		

Response

If the low TX/RX frequencies are 2402 MHz, the response would be:

>DEFAULT

EDPCFG 7,LTXFREQ,FREQ,2402E+006

DEFAULT

This parameter applies to all tests and will set that test back to its default settings.

Set command		
Command format	PCCFG <ws><scr< th=""><th>ipt number><,</th></scr<></ws>	ipt number><,
	<script number=""></script>	

Example To set the power control test in script 3 to defaults the command would be:

PCCFG 3,DEFAULT

DHXPKT - DHx test packet type to use (MT8852B only)

This parameter is used to setup the EDR packet type to be used in both the 2 Mbs and the 3 Mbs EDR type packet tests.

Set command			
Command format	ERPCFG <ws><script number=""></script></ws>		

DIRTYTAB - Write the dirty table

This parameter is used with the EDR sensitivity test, multi-slot sensitivity and single slot sensitivity tests where the dirty parameter table is available. The command allows a single entry or all entries for a parameter to be changed or read within a table. Note that the maximum number of entries for the dirty parameter table is 10 entries for single-slot sensitivity and multi-slot sensitivity tests; and 3 entries for EDR sensitivity test.

Set command Command format SSCFG<ws><scriptnumber><.>DIRTYTAB<.><variable> <.><entrv><.><number> <script number> $3 \rightarrow 10$ OFFSET | SYMT | MODINDEX <variable> OFFSFT Set the frequency offset SYMT Set symbol timing value MODINDEX Set the modulation index value (does not apply to EDR sensitivity test) <entry> $0 \mid 1 \rightarrow 10$ for single-slot and multi-slot sensitivity tests $0 \mid 1 \rightarrow 3$ for EDR sensitivity test Select '0' to set all entries at once. In this case <number> consists of comma separated entries for the whole table. <number> Ranges depend on the <variable> parameter (see below) OFFSFT -75 kHz → +75 kHz SYMT -20 ppm → +20 ppm MODINDEX 0.25 → 0.38 (does not apply to EDR sensitivity test) Example Example 1: To set the single slot dirty table offset entry 4 value to -10 kHz in script 4 single slot sensitivity test the command would be: SSCFG 4, DIRTYTAB, OFFSET, 4, -10 kHz Example 2: To set all the table entries at once of OFFSET the command would be: SSCFG 4, DIRTYTAB, OFFSET, 0, -75 KHz, 0 KHz, 15 KHz, 3 kHz, -20 kHz, -10E3, 13E3, -4.6E4, 1 KHz. 0 Example 3: To set all table entries for script 7 EDR Sensitivity test using OFFSET, the command would be: EBSCFG 7.DIRTYTAB.OFFSET.0. 15 KHz. 3 kHz. -20 kHz

Request command			
Command format	EBSCFG? <ws><script number><,>DIRTYTAB<,><variable><,><entry></entry></variable></script </ws>		
	<script number=""></script>		

DIRTYTX

This parameter is used to set or read whether the dirty transmitter is applied during the single slot and multi slot sensitivity tests, and single payload test when a payload of PRBS9 is used.

Command format	SSCFG <ws><script number=""></script></ws>	
----------------	--	--

Frequencies Used (LFREQSEL, MFREQSEL, HFREQSEL)

These parameters are used to select or read whether the low, medium or high frequencies are used when the test is run.

Set command			
Command format	PCCFG <ws><script number=""></script></ws>		

DRIFTS

This application turns on or off the application of drift as specified in the RF *Bluetooth* test specification.

Set command		
Command format	SSCFG <ws><script number=""></script></ws>	

HOPMODE

When a test is run with hopping on, this parameter is used to set which packets in the hop sequence are used for measurement.

Command format	ICCFG <ws><scr< th=""><th colspan="2">ICCFG<ws><script number=""></script></ws></th></scr<></ws>	ICCFG <ws><script number=""></script></ws>	
----------------	--	--	--

HOPPING

Some of the tests can be done in both hopping ON and hopping OFF states. This parameter is used to set or read in which states the test will be done when a test with this parameter is run.

Command format	<pre>ICCFG<ws><script number=""></script></ws></pre>	
----------------	--	--

HOPSTATE

Set command

The single payload test can be performed in both hopping on and hopping off states. This parameter is used to set or read in which state the single payload test will be performed.

Command format	SPCFG <ws><script number=""></script></ws>		

MINPWR

This parameter is used to set or read the required minimum EUT TX power level the power control test will step to if the EUT has not already reached it's minimum.

Set command		
Command format	PCCFG <ws><script number=""></script></ws>	
NUMBITS - Number of bits (MT8852B only)

This parameter is used to setup the number of bits for the EDR Maximum input power level test.

Set command	
Command format	EMPCFG <ws><script number=""></script></ws>

NUMBLKS - Number of blocks to test (MT8852B only)

This parameter is used to define the number of blocks over which the EDR carrier frequency stability and modulation accuracy test is to be performed.

Set command			
Command format	ECMCFG <ws><script number=""></script></ws>		

NUMCYC

This parameter is used to set or read the number of cycles used in the power control test. Each cycle of the test is as follows. The EUT is set to its maximum power level and then is stepped down to its minimum power level. Then the EUT is stepped up to the maximum power.

Command format	PCCFG <ws><script number=""></script></ws>	
----------------	--	--

NUMPKTS

This parameter is used to set or read the number of packets that are used for each part of the test. For each of the LOW, MEDIUM and HIGH frequencies selected to be used as part of the test, this is the number of packets measured. For hopping tests this value will be used depending on the test and the hopping mode. For the power control test, this is the number of packets measured per step.

Command format	OPCFG <ws><script number=""></script></ws>	
----------------	--	--

PAYLOAD

This sets the payload data for the packet type defined.

Command format	SPCFG <ws><script number=""></script></ws>	
----------------	--	--

PEAKLIM

This parameter is used to set or read the limit used to determine if the peak power reading in the output power test passes or fails.

Set command		
Command format	OPCFG <ws><script number=""></script></ws>	

PKTCOUNT

This parameter is used to configure how the packets are counted during this test. If the packet count is set to transmitted packets the test may not be performed on 1.6 million or greater due to lost packets. If the packet count is set to packets received then the test would be carried out on the 1.6 million or greater bits, but could take longer to complete.

Command format	SSCFG <ws><script number=""></script></ws>	
----------------	--	--

PKTSIZE

This parameter is used to set or read the packet sizes used for the carrier drift test. The test can be performed with all or any combination of the DH1, DH3 or DH5 packets depending on which packet types the EUT support.

If the EUT does not support the requested packet size the test will FAIL reporting an execution error.

Command format	CDCFG <ws><script number=""></script></ws>	
----------------	--	--

PKTTYPE

This parameter is used to set or read the packet type used for a test. The valid parameters depended on the test and whether an EUT supports that packet type i.e.:

Output power:	Longest supported (default), DH5, DH3 or DH1
Power control:	DH1 (default), DH3 or DH5
Modulation characteristics:	Longest supported (default), DH5, DH3 or DH1
Initial carrier:	N/A
Carrier drift:	Inherently selectable in test
Single slot sensitivity:	N/A
Multi slot sensitivity:	Longest supported (default), DH5 or DH3
Maximum input power sensitivity:	N/A
Single payload Basic Data Rate:	DH5, DH3, DH1(default)

Command format	Command format <,> <type></type>	OPCFG <ws><script number=""></script></ws>
----------------	-------------------------------------	--

PTXLEV - Set Maximum-Minimum Output Power (MT8852B only)

This parameter is used to define whether the EDR Relative Transmit power test (ERPCFG) should be carried out at minimum and/or maximum power levels.

Set command				
Command format	ERPCFG <ws><sc< td=""><td colspan="3">ERPCFG<ws><script number=""></script></ws></td></sc<></ws>	ERPCFG <ws><script number=""></script></ws>		

PWRDELAY

This parameter is used to set or read the delay required for the EUT to change the TX power as requested before measurements are made. *Bluetooth* devices if they support power control should have this time in the 'Implementation Extra Information for Testing' (IXIT) document.

Command format	PCCFG <ws><script number=""></script></ws>	
----------------	--	--

THBITCNT - Threshold bit count (MT8852B only)

This parameter is used to setup the threshold bit count for the EDR sensitivity tests.

Set command		
Command format	EBSCFG <ws><s< td=""><td>cript number><,>THBITCNT<,><mbits></mbits></td></s<></ws>	cript number><,>THBITCNT<,> <mbits></mbits>
	<script number=""></script>	

Change Mod Index Test Payload Toggle Operation (TOGGLE)

The modulation index test as defined in the RF test spec requires a measurement made on two different payloads per measurement. This increases the time the test takes to complete. To shorten the time taken to perform this test, the MT8850A/52A/52B can change the payload after the requested number of packets have been measured with the first payload, and then measure the requested number of packets with the second payload.

Set command		
Command format	MICFG <scriptnumbe< th=""><th>er>,TOGGLE<ws><mode></mode></ws></th></scriptnumbe<>	er>,TOGGLE <ws><mode></mode></ws>
	<script number=""></script>	

TSTCTRL

This parameter is used to configure the test control type to apply on a test-by-test basis. All test that support both loopback and TX mode are listed below with their default value setting.

Output power (OPCFG):	Loop back test control
Power control (PCCFG):	Loop back test control
Modulation Index (MICFG):	Loop back test control
Single payload (SPCFG):	Loop back test control
Initial carrier (ICCFG):	Loop back test control
Carrier drift (CDCFG):	Loop back test control
EDR Relative Transmit Power (ERP) (MT8852B only):	Loop back test control
EDR Carrier Frequency and Modulation accuracy (ECM) (MT8852B only):	Loop back test control

Command format	OPCFG <ws><script number=""></script></ws>	
----------------	--	--

TTBITCNT - Total test bit count(MT8852B only):

This parameter is used to setup the total bit count for the EDR sensitivity tests.

Set command			
Command format	EFSCFG <ws><script number=""></script></ws>		

TXPWR

This parameter is used to configure the required TX power level during the sensitivity tests. When the path loss table and/or fixed offset parameters are enabled, the specified power level will be corrected accordingly to minimise connection losses and ensure that the EUT receives at the stated power level.

SSCFG <ws><script number=""></script></ws>	
--	--

Chapter 12. Running and Aborting Tests

Running Tests (RUN)

This command runs either the test or the script depending on the operation mode. Refer to the operation mode command (OPMD) for details.

Command format RUN

It should be noted that when the EUT mode is set to Inquiry, the number of responses must be 1 or the GPIB RUN command will be rejected with an execution error.

Aborting Tests (ABORT)

This command will abort the test or script being run. The test or script will stop immediately and will not wait for the end of the test or script. The result available remains valid.

Command format ABORT

Chapter 13. Reading Test Results Data

This command requests results of the test/script last run. If results are requested while a script or test is running an execution error will be indicated. Results screens comprise of an initial "summary" results screen and subsequent " extended" screens. Both summary and extended data is presented for each of the tests in this chapter. The test results are invalidated on power ON, at the start of the test, or on the receipt of the *RST command. It should be noted that the PASS/FAIL indicator only applies to the measurements made. To test for a premature ending of a test or script, the DDE bit in the ESR register should be checked.

Summary Results Screens

Command format	ORESULT <ws>SCRIPT<,><extend code=""></extend></ws>		
	or ORESULT <ws>TEST<,><extend cod<br=""><extend code=""> 0 to N (N is test de support that extend code is used. (0 = s</extend></extend></ws>		
			ST<,> <extend code=""><,><test></test></extend>
			0 to N (N is test dependant). If a test does not support that extended code the next valid lower code is used. (0 = standard)
	<test></test>		
	OP	Outpu	t power
	PC	Power	control
	MI	Modul	ation index
	IC	Initial	carrier
	CD	Carrie	r drift
	SS	Single	slot sensitivity
	MS	Multi s	slot sensitivity
	MP	Maxim	num input power
	ERP	EDR F	Relative transmit power test (MT8852B only)
	ECM	EDR C accura	Carrier frequency stability and modulation acy test (MT8852B only)
	EDP	EDR [Differential phase encoding test (MT8852B only)
	EBS	EDR S	Sensitivity test (MT8852B only)
	EFS	EDR f	loor sensitivity test (MT8852B only)
	EMP		Aaximum Input Power test (MT8852B only)

Example To request the whole script results with standard non extended code,0, the command would be: ORESULT SCRIPT,0

To request the standard results of an Output Power test, the command would be:

ORESULT TEST,0,0P

Output format The output format of each test follows the test result format. When the results from a complete script are given, the results for each are in the test format, and are separated by commas.

Summary Results Output Format

Command format: <HEADER><Ext-code>, <data>

<header></header>	2	or 3 AS	CII characters indicating which test the results are for.		
	0	Р	Output power test results		
	Ρ	С	Power control test results		
	М	1	Modulation characteristics test results		
	IC	;	Initial carrier test results		
	С	D	Carrier drift test results		
	S	S	Single slot sensitivity test results		
	Μ	IS	Multi-slot sensitivity test results		
	Μ	IP	Max input power sensitivity test results		
	E	RP	EDR Relative transmit power test (MT8852B only)		
	E	СМ	EDR Carrier frequency and modulation accuracy test (MT8852B only)		
	E	DP	EDR Differential phase encoding test (MT8852B only)		
	E	BS	EDR Sensitivity test (MT8852B only)		
	E	FS	EDR floor sensitivity test (MT8852B only)		
	E	MP	EDR Maximum Input Power test (MT8852B only)		
<ext-code></ext-code>	S is	ingle by test re	te indicating the extended information code. The extended code lated.		
0	S	tandard	results		
<data></data>	TI	he data	is in ASCII and is test dependent.		
	All data elements are comma delimited for clarity.				

Extended Results Data Output

Command format

XRESULT<ws><test><,><stage>

<test></test>		
OP	Output power	
PC	Power control	
IC	Initial carrier	
CD	Carrier drift	
MI	Modulation index	
SS	Single slot sensitivity	
MS	Multi slot sensitivity	
MP	Maximum input power	
ERP	EDR Relative transmit power (MT8852B only)	
ECM	EDR Carrier frequency stability and modulation accuracy (MT8852B only)	
EDP	EDR Differential phase encoding (MT8852B only)	
EBS	EDR Sensitivity (MT8852B only)	
EFS	EBSCFG floor sensitivity (MT8852B only)	
EMP	EDR Maximum Input Power (MT8852B only)	
<stage></stage>		
lf <test> = ERP, u</test>	se the following parameters:	
HOPONLMIN	Hopping ON, low frequency, min power	
HOPONLMAX	Hopping ON, low frequency, max power	
HOPONMMIN	Hopping ON, mid frequency, min power	
HOPONMMAX	Hopping ON, mid frequency, max power	
HOPONHMIN	Hopping ON, high frequency, min power	
HOPONHMAX	Hopping ON, high frequency, max power	
HOPONALLMIN	Hopping ON, all channels, min power	
HOPONALLMAX	Hopping ON, all channels, max power	
HOPONANYMIN	Hopping ON, any channel, min power	
HOPONANYMAX	Hopping ON, any channel, max power	
HOPOFFLMIN	Hopping OFF, low frequency, min power	

HOPOFFMMIN	Hopping OFF, mid frequency, min power
HOPOFFMMAX	Hopping OFF, mid frequency, max power
HOPOFFHMIN	Hopping OFF, high frequency, min power
HOPOFFHMAX	Hopping OFF, high frequency, max power
For any other <te< th=""><th>est> use the following parameters:</th></te<>	est> use the following parameters:
HOPONL	Hopping ON, low frequency
HOPONM	Hopping ON, mid frequency
HOPONH	Hopping ON, high frequency
HOPONALL	Hopping ON, all channels
HOPONANY	Hopping ON, any channel
HOPOFFL	Hopping OFF, low frequency
HOPOFFM	Hopping OFF, mid frequency
HOPOFFH	Hopping OFF, high frequency
To request the Or	Itout Power Hopping ON Low Channel result

Example To request the Output Power Hopping ON Low Channel results, the command would be:

XRESULT OP, HOPONL

Extended Results Output Format

Command format: <HEADER><Ext-code>, <data>

Header	3 or 4 AS	4 ASCII characters indicating which test the results are for.		
	XOP	Output power test results		
	XPC	Power control test results		
	XMI	Modulation characteristics test results		
	XIC	Initial carrier test results		
	XCD	Carrier drift test results		
	XSS	Single slot sensitivity test results		
	XMS	Multi-slot sensitivity test results		
	XMP	Max input power sensitivity test results		
	XERP	EDR relative transmit power test results		
	XECM	EDR frequency stability and modulation accuracy test results		
	XEDP	EDR differential phase encoding test results		
	XEBS	EDR sensitivity test results		
	XEFS	EDR floor sensitivity test results		
	XEMP	EDR Maximum Input Power test results		
Extended code	Single by is test re	te indicating the extended information code. The extended code lated.		
0	Standard	d results		
Data	The data	data is in ASCII and is test dependent.		
All data elements are comma delimited for clarity.				

Output Power Test Results

Summary screen	
Extended codes : 0	Standard
Results valid	e.g. TRUE (or FALSE)
Packet average power in dBm	e.g12.5
Test avg max in dBm	e.g. 11.6
Test avg min in dBm	e.g. 10.4
Test peak power in dBm	e.g. 11.2
Pass/fail result	e.g. PASS (or FAIL)
Example output: "OP0,TRUE,-?	2.5,11.6,10.4,11.2,PASS"

Extended screens

Valid stages : HOPONL, HOPONM, HOPONH, HOPONALL, HOPONANY, HOPOFFL, HOPOFFM, and HOPOFFH.

Results valid	: TRUE or FALSE	
Test max	: floating point value	e.g. –0.95
Test min	: floating point value	e.g. –0.97
Test peak	: floating point value	e.g. –0.83
Test Average	: floating point value	e.g. –0.95
Failed	: Integer	e.g. 2
Tested	: Integer	e.g. 10
State	: Text "PASS" or "FAIL"	e.g. PASS

Power Control Test Results

Summary screen

Extended codes	0 1	Standard All steps in last cycle
Results valid	e.g. TRU	E (or FALSE)
Average power of last packet in dBm	e.g. 0.4	
Maximum power of all packets in dBm	e.g. 1.5	
Minimum power of all packet in dBm	e.g2.6	
Maximum step size in dBm	e.g. 6.4	
Minimum step size in dBm	e.g. 2.5	
Pass/fail state	e.g. PASS	6 (or FAIL)

Example output if extended code 0

"PC0,TRUE,0.4,1.5,-2.6,6.4,2.5,PASS"

If the extended code is 1, the result would appended to the end, each power steps average power for the last cycle. This comprises:

- Number of entries e.g. 5 (Max number of steps kept is 50).
- Value in dB for the number of entries

Example output if extended code 1

"PC1,TRUE,0.4,1.5,-2.6,6.4,2.5,PASS,5,-20.8,-16.2,-14.9,-11.0,-5.8"

Extended screens

Valid stages	: HOPOFFL, HOPOFFM and HOPOFFH	l
Results valid	: TRUE or FALSE	
Max power	: floating point value e.g1.7	
Min power	: floating point value e.g41.	1
Max step	: floating point value e.g. 4.0	
Min step	: floating point value e.g. 2.8	
Failed	: Integer	e.g. 0
Tested	: Integer	e.g. 26
State	: Text "PASS" or "FAIL"	e.g. PASS

Example output: -

XPC,HOPOFFL,TRUE,-1.7,-41.1,4.0,2.8,0,26,PASS

Modulation Index Test Results

Summary screen	
Extended codes	0 Standard
Results valid	e.g. TRUE (or FALSE)
Delta f1 max in Hz	e.g. 22E3
Delta f1 average in Hz	e.g. 143E3
Delta f2 max in Hz	e.g. 120E3
Delta f2 average in Hz	e.g. 119E3
Delta f2avg/ delta f1avg	e.g. 0.5
Pass/fail result	e.g. PASS (or FAIL)
Example output	
"MI0,TRUE,22e3,143e3,120e3	,119e3,0.5,PASS"
Extended codes	1
F2max % pass rate	e.g. 98.7%
Example output	
"MI0,TRUE,22e3,143e3,12	0e3,119e3,0.5,PASS,98.7"

Extended screens

Valid stages	: HOPOFFL, HOPOFFM and H	OPOFFH
Results valid	: TRUE or FALSE	
F1 average	: floating point value e.g. 1.551	E005
F1 max	: floating point value e.g. 1.368	E005
F2 average	: floating point value e.g. 1.585	E005
F2 max	: floating point value e.g. 1.304	E005
F2avg/F1avg	: floating point value e.g. 8.8E-	001
F2 max Failed	: Integer	e.g. 0
F2 Max count (Total)	: Integer	e.g. 3
Failed	: Integer	e.g. 0
Tested	: Integer	e.g. 20
State	: Text "PASS" or "FAIL"	e.g. PASS

Example output

XMI,HOPOFFL,TRUE,1.551E005,1.368E005,1.585E005,1.304E005,8.8E-001,0,3,0,20,PASS

Initial Carrier Test Results

Extended codes	0 St	tandard
Results valid	e.g. TRUE	(or FALSE)
Frequency offset in Hz	e.g. 12E3	
Test average offset in Hz	e.g. 10.4E3	
Max positive offset in Hz	e.g. 34E3	
Max negative offset in Hz	e.g38E3	
Pass/fail result	e.g. PASS	(or FAIL)
Example output		
"IC0,TRUE,12e3,10.4e3,3	4e3,-38e3,I	PASS"

Extended screens

Valid stages: HOPOFFL, HOPOFFM, HOPOFFH, HOPONALL, HOPONANY, HOPONL, HOPONM and HOPONH

Results valid	: TRUE or FALSE	
Average offset	: floating point value e.g. 1.81E	54
Max +ve offset	: floating point value e.g. 2.07E	54
Max -ve offset	: floating point value e.g. 1.38E	4
Failed	: Integer	e.g. 0
Tested	: Integer	e.g. 10
State	: Text "PASS" or "FAIL"	e.g. PASS

Example output: -

XIC,HOPOFFL,TRUE,1.81E4,2.07E4,1.38E4,0,10

Carrier Drift Test Results

Extended codes	0	Standard
Drift rate valid	e.g. TRUE	E (or FALSE)
Test drift rate in Hz/50uS	e.g. 2400	0
One slot drift valid	e.g. TRUE	E (or FALSE)
One slot packet drift in Hz	e.g. 23E3	
Three slot drift valid	e.g. TRU	E (or FALSE)
Three slot packet drift in Hz	e.g33E	3
Five slot drift valid	e.g. FALS	E (Five slot packets not tested)
Five slot packet drift in Hz	e.g31E3	3
Pass/fail result	e.g. PASS	6 (or FAIL)
Example output		

"CD0, TRUE, 24000, TRUE, 23E3, TRUE, -33E3, FALSE, -31E3, PASS"

Extended screens

Valid stages: HOPOFFL, HOPOFFM, HOPOFFH, HOPONALL, HOPONANY, HOPONL, HOPONM and HOPONH

DH1 results valid	: TRUE or FALSE	
Max rate DH1	: floating point valu	e e.g. 5170
Max drift DH1	: integer e.g. –7E	003
Average drift DH1	: integer e.g4E	003
DH1 Failed	: Integer e.g. 0	
DH1Tested	: Integer e.g. 30	
DH1 State	: Text "PASS" or "F	AIL" e.g. PASS
DH3 results valid	: TRUE or FALSE	
Max rate DH3	: floating point valu	e e.g. 5170
Max drift DH3	: integer	e.g. –7E003
Average drift DH3	: integer	e.g. –4E003
DH3 Failed	: Integer	e.g. 0
DH3Tested	: Integer	e.g. 30
DH3 State	: Text "PASS" or "F	AIL e.g. PASS
DH5 results valid	: TRUE or FALSE	
Max rate DH5	: floating point valu	e e.g. 5170
Max drift DH5	: integer	e.g. –7E003

Average drift DH5	: integer	e.g. –4E003
DH5 Failed	: Integer	e.g. 0
DH5Tested	: Integer	e.g. 30
DH5 State	: Text "PASS" or "FA	AIL" e.g. PASS

Example output

XCD,HOPOFFL,TRUE,5170,-7E003,-4E003,0,10,PASS,TRUE,5170,-7E003,-4E003,0,10,PASS,TRUE,5170,-7E003,-4E003,0,10,PASS

Carrier Drift RESULT Output in Null Packet Mode

The reply to the ORESULT request for the carrier drift test when in NULL packet mode is as follows: Null Average Drift valid e.g. TRUE (or FALSE) Null Average Drift value in Hz e.g. 24E3 Null Maximum Drift valid e.g. TRUE (or FALSE) Null Maximum Drift value in HZ e.g. 25E3 Dummy Entry 1 always FALSE Dummy Entry 2 always 0.0 Dummy Entry 3 always FALSE Dummy Entry 4 always 0.0 Pass/Fail result e.g. PASS (or FAIL)

Example output

"CD0, TRUE, 24E3, TRUE, 25E3, FALSE, 0.0, FALSE, 0.0, PASS"

Single Slot Sensitivity Test Results

Extended codes	: 0	Standa	ard	
Results valid	e.g. TR	UE	(or FA	LSE)
Current BER %	e.g. 0.0	05		
Overall BER %	e.g. 0.0	05		
Current FER %	e.g. 0.0	09		
Overall FER %	e.g. 0.0	09		
Pass/fail result	e.g. PA	SS	(or FA	IL)
Extended codes :	1			
Overall CRC frame	errors		e.g. 5	Returned packet had a changed CRC
Overall Length fran	ne errors		e.g. 1	Returned packet had a different length
Overall lost packet	frame er	rors	e.g. 10	No packet returned or unrecognisable
Example output				
"SS1,TRUE,0.00	5,0.009	9,0.009	,0.009,1	PASS,5,1,10 "
Extended codes :	2			
Total packets recei	ved	e.g. 100		
Total bits in error		e.g. 120		
Total frames in erro	or	e.g. 10		

Extended codes : 3

Total packets sent e.g. 100

Extended screens

Note: The following screens are applicable to both the single and multi slot sensitivity tests, and also to maximum input power.

Valid stages	: HOPOFFL, HOPOFFM, HOPOFFH and HOPONANY	
	(HOPONANY is not applicable	to Maximum input power)
Results valid	: TRUE or FALSE	
Overall BER	: floating point value e.g. 0.019	
Overall FER	: floating point value e.g. 0.001	
State	: Text "PASS" or "FAIL"	e.g. PASS
FER CRC	: Integer	e.g. 4
FER length	: Integer	e.g. 1
FER lost	: integer	e.g. 4

MT8850A/MT8852A/MT8852B		Reading Test Results Data
Packets received	: Integer	e.g. 7404
Bit errors	: integer	e.g. 11
Frame errors	: Integer	e.g. 8
Packets sent	: Integer	e.g. 7408

Example output: -

XSS,HOPOFFL,TRUE,0.19,PASS,4,1,4,7404,11,8,7408

Multi Slot Sensitivity Test Results

Extended codes	: 0	Standard	l
Results valid	e.g. TR	UE	(or FALSE)
Current BER	e.g. 0.0	005	
Overall BER	e.g. 0.0	005	
Current FER	e.g. 0.0	009	
Overall FER	e.g. 0.0	009	
Pass/fail result	e.g. PA	SS	(or FAIL)
Extended codes :	1		
Overall CRC FERs		e.g. 5	Returned packet had a changed CRC
Overall Length FER	S	e.g. 1	Returned packet had a different length
Overall lost packet I	FERs	e.g. 10	No packet returned or unrecognisable
Example output			
"MS1,TRUE,0.005	5,0.00	9,0.009,0.	.009,PASS,5,1,10 "
Extended codes : 2	2		
Total packets receiv	/ed	e.g. 100	
Total bits in error		e.g. 120	
Total frames in erro	r	e.g. 10	
Extended codes : 3	3		
Total packets sent		e.g. 100	

Extended screens

Refer to the extended screens section of the single slot sensitivity test.

Input Power Test Results

Extended codes	: 0	Standard	l
Results valid	e.g. TRU	ΙE	(or FALSE)
Current BER	e.g. 0.00	5	
Overall BER	e.g. 0.00	5	
Current FER	e.g. 0.00	9	
Overall FER	e.g. 0.00	9	
Pass/fail result	e.g. PAS	S	(or FAIL)

Extended codes : 1

Overall CRC FERs	e.g. 5	Returned packet had a changed CRC
Overall Length FERs	e.g. 1	Returned packet had a different length
Overall lost packet FERs	e.g. 10	No packet returned or unrecognisable

Example output

"MP1,TRUE,0.005,0.009,0.009,0.009,PASS,5,1,10 "

Extended codes : 2

Total packets received	e.g. 100
Total bits in error	e.g. 120
Total frames in error	e.g. 10
Extended code	3
Total packets sent	e.g. 100

Extended screens

Refer to the extended screens section of the single slot sensitivity test.

Relative Transmit Power Test Results (MT8852B only)

Summary screen	
Extended code	0 = Standard
2 Mbs DHx results valid	e.g. TRUE FALSE
Max 2 DHx power difference in dBm	e.g2.0
Min 2 DHx power difference in dBm	e.g. –1.0
Avg 2 DHx power difference in dBm	e.g1.5
2 Mbs Pass or Fail	e.g. PASS FAIL
3 Mbs DHx results valid	e.g. TRUE FALSE
Max 3 Mbs DHx power difference in dBm	e.g4.0
Min 3 Mbs DHx power difference in dBm	e.g. –3.0
Avg 3 Mbs DHx power difference in dBm	e.g3.5
3 Mbs Pass or fail	e.g. PASS FAIL
Example output:	ERP0,TRUE,-2.0,-1.0,-1.5,TRUE,TRUE,-4.0,- 3.0,-3.5,PASS
Extended screens	
Valid stages and results	HOPOFFLMIN HOPOFFLMAX HOPOFFMMIN HOPOFFM HOPOFFM MAX HOPOFFHMIN HOPOFFHMAX HOPONLMIN HOPONLMAX HOPONMMIN HOPONMMAX HOPONHMIN HOPONHMAX HOPONALLMIN HOPONALLMAX HOPONANYMIN HOPONANYMAX
2Mbs DHx results valid	e.g. TRUE FALSE
Max 2 Mbs DHx power difference in dBm	e.g2.0
Min 2 Mbs DHx power difference in dBm	e.g. –1.0
Avg 2 Mbs DHx power difference in dBm	e.g1.5
2 Mbs Pass or Fail	e.g. PASS FAIL
3 Mbs DHx results valid	e.g. TRUE FALSE
Max 3 Mbs DHx power difference in dBm	e.g4.0
Min 3 Mbs DHx power difference in dBm	e.g. –3.0
Avg 3 Mbs DHx power difference in dBm	e.g3.5
3Mbs Pass or fail	e.g. PASS FAIL
Example output	

XERP,HOPOFFLMIN,TRUE,-2.0,-1.0,-1.5,PASS,TRUE,-4.0,-3.0,-3.5,PASS
Carrier Frequency Stability and Modulation Accuracy Test Results (MT8852B only)

Summary screen	
Extended code	0 = Standard
2Mbs results Valid	e.g. TRUE FALSE
2Mbs RMS EVM	e.g. 0.100
2Mbs PEAK DEVM	e.g. 0.200
2Mbs 99% DEVM	e.g. 99.030
2Mbs Avg RMS DEVM %	e.g. 0.100
2Mbs Initial frequency error (kHz)	e.g27.1
2Mbs Frequency error (kHz)	e.g. 34.2
2Mbs Block freq error in (kHz)	e.g. 7.3
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs results Valid	e.g. TRUE FALSE
3Mbs RMS EVM	e.g. 0.130
3Mbs PEAK DEVM	e.g. 0.220
3Mbs 99% DEVM	e.g. 99.070
3Mbs Avg RMS DEVM %	e.g. 0.110
3Mbs Initial frequency error (kHz)	e.g. 17.3
3Mbs Frequency error (kHz)	e.g. 36.2
3Mbs Block freq error (kHz)	e.g. 53.1
3Mbs Pass or Fail	e.g. PASS FAIL

Example output:

ECM0,TRUE,0.100,0.200,99.030,0.000.100,-27.1,34.2,7.3,PASS,TRUE,0.130,0.220, 99.07,0.110,17.3,36.2,53.100.0000.,PASS

Extended screens

HOPONH | HOPONALL | HOPONANY

Valid stages and results: HOPOFFL | HOPOFFM | HOPOFFH | HOPONL | HOPONM |

2MBs results Valid	e.g. TRUE FALSE
2MBs RMS EVM	e.g. 0.100
2Mbs PEAK DEVM	e.g. 0.200
2Mbs 99% DEVM	e.g. 99.030
2Mbs Avg RMS DEVM %	e.g. 0.100

2Mbs Initial frequency error (kHz)	e.g27.1
2Mbs Frequency error in (kHz)	e.g. 34.2
2Mbs Block freq error in (kHz)	e.g. 7.3
2MBs Pass or Fail	e.g. PASS FAIL
3MBs results Valid	e.g. TRUE FALSE
3MBs RMS EVM	e.g. 0.130
3MBs PEAK DEVM	e.g. 0.220
3MBs 99% DEVM	e.g. 99.070
3Mbs Avg RMS DEVM %	e.g. 0.110
3MBs Initial frequency error (kHz)	e.g. 17.3
3MBs Frequency error (kHz)	e.g. 36.2
3MBs Block freq error (kHz)	e.g. 53.1
3MBs Pass or Fail	e.g. PASS FAIL

Example output:

XECM,HOPOFFM,TRUE,0.100,0.200,0.300,0.100,-27,34,7,PASS,TRUE,0.1300,

0.220,0.200,0.110,17,36,53, PASS

Differential Phase Encoding Test Results (MT8852B only)

Summary s	creen
-----------	-------

Extended code	0 = Standard
2Mbs Results Valid	e.g. TRUE FALSE
2Mbs Packets received	e.g. 234
2Mbs Packets in error	e.g. 12
2Mbs % Good Packets	e.g. 95
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs Results Valid	e.g. TRUE FALSE
3Mbs Packets received	e.g. 234
3Mbs Packets in error	e.g. 12
3Mbs %Good Packets	e.g. 95
3Mbs Pass or Fail	e.g. PASS FAIL

Example output

EDP0,TRUE,234,12,95,PASS,TRUE,234,12,95,PASS

Extended screens

Valid stages and results:	HOPOFFL HOPOFFM HOPOFFH HOPONANY
2Mbs Results Valid	e.g. TRUE FALSE
2Mbs Packets received	e.g. 234
2Mbs Packets in error	e.g. 12
2Mbs Good Packets %	e.g. 95
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs Results Valid	e.g. TRUE FALSE
3Mbs Packets received	e.g. 234
3Mbs Packets in error	e.g. 12
3Mbs Good Packets %	e.g. 95
3Mbs Pass or Fail	e.g. PASS FAIL
Example	
XEDP.HOPONANY.TRUE.23	4.12.95.PASS.TRUE.234.12.95.PASS

Sensitivity Test Results (MT8852B only)

Summary screen	
Extended code	0 = Standard
2Mbs results Valid	e.g. TRUE FALSE
2Mbs overall BER	e.g. 6 25e-005
2Mbs Bits in error	e.g. 100
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs results Valid	e.g. TRUE FALSE
3Mbs overall BER	e.g. 9.38e-005
3Mbs Bits in error	e.g. 1500
3Mbs packets sent	e.g. 11112
3Mbs packets in error	e.g. 7
3Mbs Pass or Fail	e.g. PASS FAIL
Example: EBS0, TRUE,6.25E-005,100,11112,7,P 005,1500,11112,7,PASS	ASS,TRUE,9.38e-

Extended screens

Valid stages and results:	HOPOFFL HOPOFFM HOPOFFH HOPONANY
2Mbs Results valid	e.g. TRUE FALSE
2Mbs overall BER	e.g. 6.25e-005
2Mbs Bits in error	e.g. 100
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
2Mbs Early Exit valid	e.g. TRUE FALSE
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs Results valid	e.g. TRUE FALSE
3Mbs overall BER	e.g. 9.38e-005
3Mbs Bits in error	e.g. 1500
3Mbs packets sent	e.g. 11112
3Mbs packets in error	e.g. 7
3Mbs Early Exit valid	e.g. TRUE FALSE

3Mbs Pass or Fail

e.g. PASS | FAIL

Example:

XEBS,HOPOFFM,TRUE,6.25e-005,100,11112,7,TRUE,PASS,TRUE,9.38e-005, 1500,11112,7,FALSE,PASS

BER Floor Sensitivity Test Results (MT8852B only)

Summary screen	
Extended code	0 = Standard
2Mbs results Valid	e.g. TRUE FALSE
2Mbs overall BER	e.g. 6 25e-005
2Mbs Bits in error	e.g. 100
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs results Valid	e.g. TRUE FALSE
3Mbs overall BER	e.g. 9.38e-005
3Mbs Bits in error	e.g. 1500
3Mbs packets sent	e.g. 11112
3Mbs packets in error	e.g. 7
3Mbs Pass or Fail	e.g. PASS FAIL
Example: EFS0, TRUE,6.250 005,1500,11112,7PASS	E-005,100,11112,7,PASS,TRUE,9.38e-
Extended screens	
Valid stages and results:	HOPOFFL HOPOFFM HOPOFFH HOPONANY
2Mbs Results valid	e.g. TRUE FALSE
2Mbs overall BER	e.g. 6.25e-005
2Mbs Bits in error	e.g. 100
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
2Mbs Early Exit valid	e.g. TRUE FALSE
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs Results valid	e.g. TRUE FALSE

e.g. 9.38e-005

3Mbs overall BER

3Mbs Bits in error

3Mbs packets sent	e.g. 11112
3Mbs packets in error	e.g. 7
3Mbs Early Exit valid	e.g. TRUE FALSE
3Mbs Pass or Fail	e.g. PASS FAIL

Example:

XEFS,HOPOFFM,TRUE,6.25e-005,100,11112,7,TRUE,PASS,TRUE,9.38e-005, 1500,11112,7,FALSE,PASS

Maximum Input Power Test Results (MT8852B only)

Summary screen	
Extended code	0 = Standard
2Mbs results Valid	e.g. TRUE FALSE
2Mbs overall BER	e.g. 6 25e-004
2Mbs Bits in error	e.g. 1000
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs results Valid	e.g. TRUE FALSE
3Mbs overall BER	e.g. 9.38e-004
3Mbs Bits in error	e.g. 1500
3Mbs packets sent	e.g. 11112
3Mbs packets in error	e.g. 7
3Mbs Pass or Fail	e.g. PASS FAIL

Example: EMP0, TRUE,6.25E-004,1000,11112,7,PASS,TRUE,9.38e-004,1500,11112,7,PASS

Extended screens

Valid stages and results:	HOPOFFL HOPOFFM HOPOFFH HOPONANY
2Mbs Results valid	e.g. TRUE FALSE
2Mbs overall BER	e.g. 6.25e-004
2Mbs Bits in error	e.g. 1000
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
2Mbs Pass or Fail	e.g. PASS FAIL
3Mbs Results valid	e.g. TRUE FALSE
3Mbs overall BER	e.g. 9.38e-004
3Mbs Bits in error	e.g. 1500
2Mbs packets sent	e.g. 11112
2Mbs packets in error	e.g. 7
3Mbs Pass or Fail	e.g. PASS (or FAIL)

Example:

XEMP,HOPOFFM,TRUE,6.25e-004,1000,11112,7,PASS,TRUE,9.38e-004,1500,11112,7,PASS

Chapter 14. Auxiliary Commands

This chapter provides details of the auxiliary commands allowed over the GPIB interface to help development and demonstrations. The commands are detailed in alphabetical order as shown in the list below.

- CONNECT Connect to EUT address
- CONEUTNAME Read EUT user name on connection
- CONNPKT Connection packet control
- CONTIME Connection time
- DISCONNECT Disconnect from device
- EUTRMTPWR Change the state of the EUT TX power
- FIXEDOFF Set fixed offset value
- GETEUTFEAT Obtain the supported features from the EUT
- INQCANCEL Cancel an inquiry
- INQRSP? Obtain the results of an inquiry
- INQUIRY Perform an inquiry
- LOOPBACK Perform a loop back test control sequence
- PATHDEL Delete an entry from a path loss table
- PATHEDIT Add or change entries in a path loss table
- PATHOFF Set path offset mode
- PATHRD Read a complete path loss table and output it over the GPIB
- PATHTBL Set path offset table
- TESTMODE Put the EUT into test mode
- TSTDELAY Set test control delay
- TXTEST Perform a TX test control sequence
- WRDTY Write the dirty parameter settings to the core

CONNECT (Connect to EUT Address)

This command will try to make an ACL connection to the devices whose address is already in the MT8850A/52A/52B as the EUT address.

Command format CONNECT

This command will not request the EUT features. Do not use this command to make a connection before running a normal test. Only use the RUN command to perform normal testing.

CONEUTNAME (Read EUT User Name on a Connection)

When a test or script is run, the MT8850A/52A/52B will first make a connection to the EUT. During this connection process the EUT features and user friendly name are requested. This command allows the user to turn off this request.

Set command

Command format	CONEUTNAME <ws><script></script></ws>		
----------------	---------------------------------------	--	--

CONNPKT (Connection packet control)

Set command			
Command format	CONNPKT <ws><packet mask=""></packet></ws>		
	<packet mask=""></packet>	This is a 'binary string' where a '1' indicates that the packet type shall be used and a '0' that the packet type wont be used. The order of the packet type is as follows:	
		<dh1><dm1><dh3><dm3><dh5><dm5> <2-DH1><3-H1><2-DH3><3-DH3> <2-DH5><3-DH5></dm5></dh5></dm3></dh3></dm1></dh1>	
Remarks	This command is used to specify which packet types the Link Manager shall use for the ACL connection.		
Example	To turn off all the EDR packet types, the command would be:		
	CONNPKT 111111000	0000	
Request command			
Command format	CONNPKT?		
Response	If the all the DH5 & DM response would be:	15 packet types were not allowed, the	
	CONNPKT 111100111	100	

CONTIME? (Connection time) (Option 15 required)

Set command			
Command format	CONTIME?		
Remarks	The MT885xA will make up to two connection attempts when requested to connect to an EUT. This command returns the connection number, and if a connection is present, the time taken in milliseconds (ms) to make the connection. On power on or before a connection has been made, the connection number displays as 0 and is not followed by a time.		
Request command			
Command format	it CONTIME, <number>[,<connection time="">] <number> : Connection number</number></connection></number>		connection time>] onnection number
		0	no connection
		1	Connection made on first attempt
		2	Connection made on second attempt
	<connection time=""></connection>	:Tin	ne taken to make the connection in mS.
Example	If the connection wa the response would	as ma be	de on the first attempt and took 1.3 seconds
Response	CONTIME,1,1300		

DISCONNECT (Disconnect From Device)

This command will disconnect any existing ACL connection. If an ACL connection does not exist, a execution error will be indicated. This command invalidated the EUT address when it is anything other than manual.

Command format DISCONNECT

Set command

EUTRMTPWR (Change the State of the EUT TX Power)

This command is used to alter the state of the EUT TX power if the EUT supports power control. If no connection is present, if the EUT does not support power control, or if the MT8850A/52A/52B has not got the supported features for the EUT, the command will report an execution error. This command can be used in conjunction with the EUTMAXPWR, set to OFF, to use the output power test to measure the power of each step.

Command format	EUTRMTPWR <ws><param/></ws>		
	<param/>	MIN DEC INC MAX	Set the EUT to minimum power EUT increments its power by one step EUT decrements its power by one step Set the EUT to maximum power

FIXEDOFF (Set Fixed Offset Value)

This command is used to set or read the fixed path offset value applied during testing when the path offset mode is set to FIXED.

oor oonnana		
Command format	FIXEDOFF <ws><script no=""></script></ws>	

GETEUTFEAT (Obtain Supported Features from EUT)

This command is used to request the supported features from the EUT regardless of whether or not this information is already available from a previous request or connection. The features are then available to be read over the GPIB using the SYSCFG? EUTFEAT command. If a connection has not already been made an execution error will be reported

Command format GETEUTFEAT

Refer to Appendix A for a list of supported features.

INQCANCEL (Cancel an Inquiry)

This command will cancel an inquiry operation. The INQ bit in the Instrument Status Register will be set. The MAV bit will not be set and there will be no data in the Output Buffer. Any addresses found during the inquiry before the INQCANCEL command was received will be available via the INQRSP? command.

Command format INQCANCEL

INQRSP? (Obtain the Results of an Inquiry)

This command is used after an INQUIRY or INQCANCEL command to obtain the results of the inquiry.

Command format	INQRSP?	
Response	<n><,><respon< th=""><th>se 1><,><response 2=""><,><response n=""></response></response></th></respon<></n>	se 1><,> <response 2=""><,><response n=""></response></response>
	where	
	<n></n>	number of addresses found by the inquiry (256 max)
	and	
	<response n=""></response>	<address><,><length name="" of=""><,><name string></name </length></address>
	where	
	<address></address>	Bluetooth address in standard Bluetooth format.
	<length name="" of=""></length>	Length of User Friendly Name (up to 20 characters).
	<name string=""></name>	User Friendly Name truncated 20 characters maximum. Contains the string 'NO NAME' if there is no User Friendly Name.

INQUIRY (Perform an Inquiry)

This command will perform an inquiry based on the internal inquiry parameters already set up within the MT8850A/52A/52B. (See SYSCFG INQSET). On completion of the inquiry the INQ bit in the Instrument Status Register (INS) will be set. The MAV bit will not be set and there will be no data in the Output Buffer.

To obtain the results of an inquiry use the INQRSP? Command.

Command format INQUIRY

LOOPBACK (Perform a Loop Back Test Control Sequence)

This command allows a single loop back test control sequence to be requested. The command will be rejected with an execution error if an ACL connection does not already exist (see CONNECT command) and the device the MT8850A/52A/52B is connected to is not already in test mode (see TESTMODE command).

Command format	LOOPBACK <ws><pattern><,><hoptype><,><eut txchan=""> <,> <eut rxchan=""><,><pkt><,><datalen><,> <dirtyen><,> <dirty index=""><,><dirty window><,><numpkts><,> <whitening></whitening></numpkts></dirty </dirty></dirtyen></datalen></pkt></eut></eut></hoptype></pattern></ws>			
	<pattern></pattern>	DATA10101010 DATA11110000 DATAPRBS9		
	<hoptype></hoptype>	FIXED: Fixed frequency using the EUT txchan and EUT rxchan settings		
		STANDARD: Use standard hopping scheme of 79 channel		
	<eut txchan=""> <eut rxchan=""></eut></eut>	0 to 78 0 to 78		
	<pkt></pkt>	DH1, DH3 or DH5		
	<datalen></datalen>	Size in bytes of the payload to be used in the packet type chosen. DH1 maximum length is 27 bytes DH3 maximum length is 183 bytes DH5 maximum length is 339 bytes		
	<dirtyen></dirtyen>	ENABLE or ON DISABLE or OFF The dirty transmitter can only be enabled if a dirty parameter table has been written to the <i>Bluetooth</i> core first. This can be done using the WRDTY GPIB command.		
	<dirtyindex></dirtyindex>	0 to 9 The dirty parameter table has 10 entries, the index is the offset from the start of the table from which to use the dirty parameters.		
	<dirtywindow></dirtywindow>	1 to 10 This is the amount of the dirty table to use within the dirty table from the index to the end of the table. The table does not wrap around so if the index is 4 the maximum window is 6.		
	<numpkts></numpkts>	0 to 10000 packets 0 means loop back until another test control or a disconnect.		
	<whitening></whitening>	ENABLE or ON DISABLE or OFF		

PATHDEL (Delete an Entry from a Path Loss Table)

This command is used to delete an entry from a path loss table. If there is no entry for the given channel number in the table specified, a GPIB execution error will be returned.

Command format	PATHDEL <ws< th=""><th colspan="3">PATHDEL<ws><,><form><,><channel></channel></form></ws></th></ws<>	PATHDEL <ws><,><form><,><channel></channel></form></ws>		
		1 to 5		
	<form></form>	CHAN: The <channel> parameter is in channel form (0 to 78) FREQ: The <channel> parameter is in frequency form (2402MHZ to 2480MHZ)</channel></channel>		
	<channel></channel>	0 to 78 (or 2402MHz to 2480MHz)		

PATHEDIT (Add or Change Entries in a Path Loss Table)

This command is used to add or change entries in a path loss table. If the channel number entered already exists, the offset for that channel will be updated to the new value. If the channel number does not already exist in the table specified, the new entry will be added.

ootoommana			
Command format	PATHEDIT <ws><,><form><,><channel><,><offset></offset></channel></form></ws>		
		1 to 5	
	<form></form>	CHAN: The <channel> parameter is in channel form (0 to 78) FREQ: The <channel> parameter is in frequency form (2402MHZ to 2480MHZ)</channel></channel>	
	<channel></channel>	0 to 78 (or 2402MHz to 2480MHz)	
	<offset></offset>	Offset in dBs. Range is 0 to -40	
Example	To set the offset for channel 4 (2406MHz) to -2.3dB in table 3: PATHEDIT 3, CHAN, 4, -2.3		
Request command			
Command format	PATHEDIT? <ws< th=""><th>><,><form><,><channel></channel></form></th></ws<>	><,> <form><,><channel></channel></form>	
Example	To read the offset for table 3 channel 4 in channel form use: PATHEDIT? 4, CHAN, 4		
Response	Reply would be in the offset -2.3		

Set command

PATHOFF (Set Path Offset Mode)

This command is used to set up the user path offset mode for the single slot and multi slot sensitivity tests. This is the path loss offset that is added to the transmitted power.

Set command			
Command format	PATHOFF <ws><script number=""></script></ws>		

PATHRD (Read a Complete Path Loss Table)

This command will read a complete path loss table and output it over the GPIB.

Command format	PATHRD <ws><,><form></form></ws>		,> <form></form>
		1 to 5	
	<form></form>	CHAN: form (0 FREQ: form (2	The <channel> parameter is in channel to 78) The <channel> parameter is in frequency 402MHZ to 2480MHZ)</channel></channel>
Example	To set the offset for channel 4 (2406MHz) to -2.3dB in table 3: PATHEDIT 3, CHAN, 4, -2.3		
Output format	<number enti<="" of="" td=""><td>ries><,>·</td><td><entry><,><entry></entry></entry></td></number>	ries><,>·	<entry><,><entry></entry></entry>
	<number entr<="" of="" td=""><td>ries></td><td>Number of entry sets that follow. If zero no entries follow</td></number>	ries>	Number of entry sets that follow. If zero no entries follow
	<entry></entry>		Each entry consists of a channel (or frequency number) followed by a loss: <channel><,><loss></loss></channel>
Example	For PATHRD 1, For PATHRD 1,	CHAN: 2 FREQ: 2	2,0,-2.3,4,-14.7 2,2.402e+009,-2.3,2.406e+009,-14.7

PATHTBL (Set Path Offset Table)

This command selects which of the PATH offset tables is applied to the script.

Set command	
Command format	PATHTBL <ws><script no=""></script></ws>

TESTMODE (Put the EUT into Test Mode)

This command will set the device the MT8850A/52A/52B is connected to into test mode. The slave device must have test mode enabled locally for the command to succeed.

An execution error will be indicated if the command fails.

Command format TESTMODE

TSTDELAY (Test Control Delay)

Each device will react to a test control command at a different speed. This command allows a delay to be set up for each script to allow for the time taken to change to the test control parameters. The test control delay is set in number of packets.

Set command

Command format	TSTDELAY <ws><script< th=""><th>number><,><number of="" packets=""></number></th></script<></ws>	number><,> <number of="" packets=""></number>
	<script number=""></script>	

TXTEST (Perform a TX Test Control Sequence)

This command allows a single TX test control sequence to be requested. The command will be rejected with an execution error if an ACL connection does not already exist (see CONNECT command) and the device the MT8850A/52A/52B is connected to is not already in test mode (see TESTMODE command).

Command format	TXTEST <ws><pattern><,><hoptype><,><txrxchan> <,><pkt><,><datalen><,><numpkts></numpkts></datalen></pkt></txrxchan></hoptype></pattern></ws>		
	<pattern></pattern>	DATA10101010 DATA11110000 DATAPRBS9	
	<hoptype></hoptype>	FIXED: Fixed frequency using the EUT txchan and EUT rxchan settings.	
		STANDARD: Use standard hopping scheme of 79 channels.	
	<txrxchan></txrxchan>	0 to 78 TX and RX frequency of the EUT.	
	<pkt></pkt>	DH1, DH3 or DH5	
	<datalen></datalen>	Size in bytes of the payload to be used in the packet type chosen.	
		DH1 maximum length is 27 bytes DH3 maximum length is 183 bytes DH5 maximum length is 339 bytes	
	<numpkts></numpkts>	0 to 10000 packets	
		0 means loop back until another test control or a disconnect	

WRDTY (Write the Dirty Parameter Settings to the Core)

This command is used to configure a set of dirty parameters for the LOOPBACK command. The command selects a dirty parameter table from either the multi-slot or single-slot sensitivity tests from any script.

Command format	WRDTY <ws><script number=""></script></ws>		
----------------	--	--	--

Appendix A. Supported Features Format

This table details the EUT feature format mask as defined in the BT specification. Refer to commands GETEUTFEAT and EUTFEAT for details on how to obtain EUT features information.

Byte	Bit	Supported feature
	0	3-slot packets
	1	5-slot packets
	2	encryption
0	3	slot offset
0	4	timing accuracy
	5	switch
	6	hold mode
	7	sniff mode
	0	park mode
	1	RSSI
	2	channel quality driven data rate
	3	SCO link
	4	HV2 packets
	5	HV3 packets
	6	u-law log
	7	A-law log
	0	CVSD
	1	paging scheme
	2	power control
2	3	Transparent SCO data
2	4	Flow control lag (bit 0)
	5	Flow control lag (bit 1)
	6	Flow control lag (bit 2)
	7	Broadcast encryption
3	0	Reserved
	1	EDR ACL 2Mbps mode
	2	EDR ACL 3Mbps mode

Byte	Bit	Supported feature	
	3	Enhanced inquiry scan	
	4	Interlaced inquiry scan	
	5	Interlaced page scan	
	6	RSSI with inquiry results	
	7	Extended SCO link (EV3 packets)	
	0	EV4 packets	
	1	EV5 packets	
	2	Reserved	
1	3	AFH capable slave	
4	4	AFH classification slave	
	5	Reserved	
	6	Reserved	
	7	3-slot EDR ACL packets	
	0	5-slot EDR ACL packets	
	1	Reserved	
	2	Reserved	
F	3	AFH capable master	
5	4	AFH classification master	
	5	EDR eSCO 2Mbps mode (MT8852B only)	
	6	EDR eSCO 3Mbps mode (MT8852B only)	
	7	3-slot EDR eSCO packets (MT8852B only)	
6	0	Reserved	
7	7	Extended features	

Appendix B. GPIB PC Card Setup

The following GPIB driver configuration set up is recommended for reliable GPIB communication with the MT8850A/52A/52B. The set up is expressed in the terms used by the National Instruments GPIB ISA and PCI cards and drivers for WIN95 and DOS.

GPIB Device Template

The MT8850A/52A/52B default primary address is 27. Separate device templates for the primary address of each device can usually be set up separately. The settings for the device template for the MT8850A/52A/52B are:

NO
YES
EOS 8 bit
0x0A (10 decimal)
YES
YES
NONE

GPIB Card Settings

The recommended GPIB card settings for use with the MT8850A/52A/52B Series are:

Terminate read on EOS	NO
Set EOI with EOS on writes	YES
Type of compare on	EOS 8 bit
EOS byte	0x0A (10 decimal)
Send EOI at end of write	YES
System controller	YES
Assert REN when SC	YES
Enable Auto Serial polling	NO
NI card. Cable length for HS488	OFF

Index

A

abbreviations, v, 1-4 ABORT, xi, 12-1 ACM, viii, 9-2 AFH, viii, 9-2 AFHCFG, viii, 9-1 AIRCODE, viii, 7-2 AUTH, vii, 6-2

В

BER floor sensitivity test results, xi, 13-22 BITPOSN, viii, 7-3 BLKFRQLH, x, 11-40 BLKFRQLL, x, 11-41 Bluetooth, 3 BNCOUTPUT, vii, 6-3 BOOTSTATUS?, vi, 5-2 BTADDR, vii, 6-4

С

carrier drift limit commands, ix, 11-31 carrier drift test configuration, ix, 11-9 carrier drift test results, xi, 13-11 carrier frequency & modulation test configuration, ix, 11-21 carrier frequency stability test results, xi, 13-18 Change Enable Register, vi, 3-8 Change Register, vi, 3-8 character case, v, 3-2 CHE, vi, 4-1, 4-2 CHG, vi, 4-1, 4-2 CLS, vi, 4-3 command presentation, v, 1-3 CONEUTNAME, xii, 14-2 CONFIG, vii, 6-5 CONNECT, xii, 14-2 CONNPKT, xii, 14-3 CONT, vi, 5-2 CONTIME?, xii, 14-4 CW measurement mode, v, ix, 2-2, 10-3 CWRESULT, ix, 10-5

D

DHXPKT, x, 11-56 differential phase encoding limit commands, x, 11-48 differential phase encoding test configuration, ix, 11-23 differential phase encoding test results, xi, 13-20 DIRTYTAB, x, 11-57 DIRTYTX, x, 11-12, 11-13, 11-14, 11-15, 11-24, 11-27, 11-59 DISCONNECT, xii, 14-4 DISPLAY, ix, 9-3 display contrast, vii, 6-12 DISPSOUND, vii, 6-12 documentation - about, 3

Е

ECWRESULT, ix, 10-6 EDR BER floor test configuration, ix, 11-25 EDR CW measurement mode, v, ix, 2-2, 10-4 EDR Equipment Under Test Fail Enable Register, vi, 3-9 EDR Equipment Under Test Fail register. vi. 3-9 EDR sensitivity limit commands, x, 11-49 EDR sensitivity test configuration, ix, 11-24 EDR signal generator mode, v, ix, 2-2, 10-2 EETE, vi, 4-1, 4-3 EETF. vi. 4-1. 4-4 Equipment Under Test Fail Enable Register, v, 3-6 Equipment Under Test Fail register, v, 3-6 ERRLST, vi, 5-3 error beep, vii, 6-13 ESE, vi, 4-1, 4-5 ESR, vi, 4-1, 4-6 ETE, vi, 4-1, 4-7 ETF, vi, 4-1, 4-7 EUTADDR, vii, 6-16 EUTFEAT, vii, 6-16 EUTINIT, vi, 5-4 EUTMAXPWR, vi, 5-5 EUTNAME, vii, 6-17 EUTPSRM, viii, 6-24 EUTRMTPWR, xii, 14-5 EUTRPT, ix, 9-3 EUTRRATE, ix, 9-4 EUTRS232, vii, 6-18 EUTSRCE, vii, 6-19

extended results screens, xi, 13-6

F

FER, ix, 9-4 FIXEDOFF, xii, 14-5 FOLTST, vii, 6-15 FREQERLH, x, 11-38 FREQERLL, x, 11-39

G

GETEUTFEAT, xii, 14-6 GPIB, vii, 6-5 GPIB 488.2 registers, v, 3-3 GPIB convention, v, 2-2

н

HFREQ, x, 11-52 HFREQSEL, x, 11-60 HOPMODE, x, 11-2, 11-3, 11-7, 11-8, 11-9, 11-10, 11-20, 11-21, 11-62 HOPPING, x, 11-2, 11-3, 11-7, 11-8, 11-9, 11-10, 11-11, 11-12, 11-13, 11-14, 11-15, 11-20, 11-21, 11-23, 11-24, 11-25, 11-26, 11-63 HOPSTATE, x, 11-27, 11-64 HPCTDEVM, x, 11-47 HPKDEVM, x, 11-47 HRMSDEVM, x, 11-45 HRMSDEVM, x, 11-43 HRXFREQ, x, 11-52 HVINFO, vii, 6-20

I

IDENT, viii, 6-20 IDN, vi, 4-1, 4-8 INE, vi, 4-1, 4-8 INITFRQLH, x, 11-36 INITFRQLL, x, 11-37 initial carrier limit commands. ix. 11-30 initial carrier test configuration. ix. 11-7 initial carrier test results, xi, 13-10 input power sensitivity test configuration, ix. 11-18 input power test results, xi, 13-16 INPUTCODE, viii, 7-4 INPUTDATA, viii, 7-5 INQCANCEL, xii, 14-6 INQRSP?, xii, 14-6 INQSET, viii, 6-21 INQUIRY, xii, 14-7 INS, vi, 4-1, 4-9

Instrument Status Enable Register, v, 3-7 Instrument Status Register, v, 3-7

Κ

key click, vii, 6-13

L

LBMODE, viii, 7-6 LFREQ, x, 11-52 LFREQSEL, x, 11-60 LKPASS, vi, 5-5 LOCK, vi, 5-6 LOOPBACK, xii, 14-8 LPCTDEVM, x, 11-46 LPKDEVM, x, 11-44 LPSTFAIL, viii, 6-27 LRMSDEVM, x, 11-42 LRXFREQ, x, 11-52

М

maximum input power test configuration. ix. 11-26 maximum input power test results, xi, 13-24 MFREQ. x. 11-52 MFREQSEL, x. 11-60 MINCHAN, ix, 9-4 MINPWR, x, 11-5, 11-65 mnemonic svntax, v. 3-1 modulation index limit commands. x. 11-33 modulation index test configuration, ix, 11-16 modulation index test results, xi, 13-9 MPLAM, ix, 9-5 MRXFREQ. x. 11-52 MTXFREQ. x. 11-52 multi slot sensitivity test configuration, ix, 11-14 multi slot sensitivity test results, xi, 13-15

Ν

NAME, viii, 6-22 NUMBITS, x, 11-66 NUMBLKS, x, 11-67 NUMCYC, x, 11-5, 11-6, 11-68 NUMPKTS, x, 11-3, 11-5, 11-8, 11-10, 11-12, 11-13, 11-14, 11-15, 11-16, 11-17, 11-18, 11-19, 11-20, 11-23, 11-69

0

OPC, vi, 4-1, 4-9 OPMD, vi, 5-7 OPTSTATUS?, viii, 6-23 output power limit commands, ix, 11-28 output power test configuration, ix, 11-2 output power test results, xi, 13-7

Ρ

PAGETO, viii, 6-24, 6-25 PAGSET, viii, 6-24 parameter variables, x, 11-52 PATHDEL, xii, 14-9 PATHEDIT, xii, 14-9 PATHOFF, xii, 14-10 PATHRD, xii, 14-11 PATHTBL, xii, 14-11 PAYLOAD, x, 11-27, 11-70 PCTPKT, x, 11-48 PDIFFLH, x, 11-35 PDIFFLL, x, 11-34 PEAKLIM, xi, 11-3, 11-4, 11-71 PINCODE, viii, 6-25 PINLEN, viii, 6-26 PKTCOUNT, xi, 11-12, 11-13, 11-14, 11-15, 11-18, 11-19, 11-24, 11-25, 11-26, 11-72 PKTSIZE, xi, 11-10, 11-73 PKTTYPE, viii, xi, 7-1, 7-7, 11-3, 11-5, 11-6, 11-8, 11-14, 11-15, 11-16, 11-17, 11-27, 11-74 power control limit commands, ix, 11-29 power control test configuration, ix, 11-5 power control test results, xi, 13-8 PTXLEV. xi. 11-75 PWRDELAY, xi, 11-5, 11-76

R

relative transmit power limit commands, x, 11-34 relative transmit power test configuration, ix, 11-20 relative transmit power test results, xi, 13-17 RNUM, viii, 6-21 RS232, vi, 3-10 RSMODE, vii, 6-7 RST, vi, 4-1, 4-10 RUN, xi, 12-1 RXFREQ, x, 11-52 S

SAMPSIZE, viii, 7-8 SCOCFG, viii, 7-1 SCOCONN, viii, 8-1 SCODISC, viii, 8-1 SCPTCFG, vi, 5-9 SCPTNM, vii, 5-11 SCPTRST, vii, 5-11 SCPTSEL, vii, 5-12 SCPTSET, viii, 6-27 script mode, v, 2-1, 5-1, 5-12 SCRIPTMODE, vii, 5-12 Self Test Items, vii, 5-15 sensitivity related limit commands, ix, x, 11-32, 11-51 sensitivity test results, xi, 13-21 Service Request Enable Register, v. 3-3 signal generator mode, v, ix, 1-2, 2-2, 10-1 single payload mode, ix, 11-27 single slot sensitivity test configuration, ix, 11-12 single slot sensitivity test results, xi, 13-13 single test mode, v, 2-1 software release notification, v, 1-2 SRE. vi. 4-1. 4-10 Standard Event Status Enable Register, v, 3-5 Standard Event Status Register, v, 3-5 STATUS, vii, 5-13 Status Byte Register, v, 3-3 STB, vi, 4-1, 4-11 STERR. vii. 5-15 suffixes, v, 3-2 summary results screens, xi, 13-1 syntax, v, 3-1 SYSCFG, vii, 6-1

Т

termination, v, 3-1 TESTMODE, xii, 14-12 tests – result format, 13-6 THBITCNT, xi, 11-77 THERR, x, 11-49 TIMEOUT, viii, 6-22 TOGGLE, xi, 11-78 TONEGEN, viii, 7-9 trademark acknowledgments, 3 TST, vi, 4-1, 4-11 TSTCTRL, xi, 11-3, 11-5, 11-6, 11-8, 11-10, 11-11, 11-16, 11-17, 11-20, 11-21, 11-27, 11-79 TSTDELAY, xii, 14-12 TSTPAUSE, vii, 5-17 TTBITCNT, xi, 11-80 TTERR, x, 11-50 TXFREQ, x, 11-52 TXPWR, vii, xi, 5-1, 5-18, 11-12, 11-13, 11-14, 11-15, 11-18, 11-19, 11-24, 11-25, 11-26, 11-81 TXTEST, xii, 14-13

U

UNLOCK, vii, 5-18 user text, vii, 6-14 user text state, vii, 6-14

۷

VERDATE, viii, 6-29 VERNUM, viii, 6-30

W

WAI, vi, 4-1, 4-11 warranty, 3, v WRDTY, xii, 14-13

<u>/Inritsu</u>

AUSTRALIA ANRITSU PTY. LTD. Unit 3, 170 Foster Road Mt Waverley, VIC 3149 Australia Telephone: +61-3-9558-8177 Fax: +61-3-9558-8255

CHINA ANRITSU BEIJING SERVICE CENTER 416W Beijing Fortune Building 5 Dong San Huan Bei Lu Chao Yang Qu, Beijing 1000004, China Telephone: +86-1186-1065909237 Fax: +86-1186-1065909236

> GERMANY Grafenberger Allee 54-56, 40237 Düsseldorf, Germany Telephone: +49-211-96855-0 Fax: +49-211-96855-55

JAPAN 5-1-1 Onna, Atsugi-shi, Kanagawa 243-8555 Japan Telephone: +81-46-223-1111 Fax: +81-120-542-425

SWEDEN Anritsu AB Fågelviksvägen 9A 145 84 Stockholm Sweden Telephone: +46-8-74-05-840 Fax: +46-8-71-09-960

UNITED STATES 1155 East Collins Blvd., Richardson, TX 75081, U.S.A. Toll Free: 1-800-ANRITSU (267-4878) Telephone: +1-972-644-1777 Fax: +1-972-671-1877 Brazil ANRITSU ELETRONICA LTDA. Praia de Botafogo 440, Sala 2401 CEP 22250-040, Rio de Janeiro, RJ, Brasil Telephone: +55-21-537-1456

FINLAND Teknobulevardi 3-5 FI-01530 Vantaa Finland Telephone: +358 9 435 522 0 Fax: +358 9 435 522 50

HONG KONG ANRITSU LIMITED LTD. Suite 719, 7/F., Chinachem Golden Plaza, 77 Mody Road, Tsimshatsui East, Kowloon, Hong Kong, China Telephone: +852-2301-4980 Fax: +852-2301-3545

KOREA ANRISU CORPORATION LTD. 14F Hyun Juk Bidg, 832-41, Yeoksam-dong, Kangnam-ku, Seoul, Korea Seoul, Korea Telephone: +82-2-553-6603 Fax: +822-453-6604*5

TAIWAN ANRITSU CO., LTD. 7F, NO.316, Sec.1 NeiHu Rd., Taipei, Taiwan, R.O.C Telephone: +886-2-8751-1816 Fax: +886-2-8751-1817 ON K2V 1C3, Canada Telephone: +1-613-591-2003 Fax: +1-613-591-1006

CANADA

700 Silver Seven Road, Suite 120, Kanata.

 FRANCE

 9, Avenue du Québec Z.A. de Courtabœuf 91951 Les Ulis Cedex, France

 Dis Cedex, France

 Telephone: +33-1-64-02-15-50

 Fax: +33-1-64-46-10-65

ITALY ANRITSU Sp.A Via Elio Vittorini, 129, 00144 Roma EUR, Italy Telephone: +39-06-509-9711 Fax: +39-06-502-24-25

SINGAPORE 10, Hoe Chiang Road, # 07-01/02 Keppel Towers Singapore 089315 Telephone: +65-282 2400 Fax : +65- 282 2533

UNITED KINGDOM European Measurement Division Rethreford Close, Stevenage, Herts, SG1 2EF U.K. Telephone: +44-1438-740011 Fax: +44-1438-740202